scholarly journals Ocean forecasting for the German Bight: from regional to coastal scales

Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1105-1136 ◽  
Author(s):  
Emil V. Stanev ◽  
Johannes Schulz-Stellenfleth ◽  
Joanna Staneva ◽  
Sebastian Grayek ◽  
Sebastian Grashorn ◽  
...  

Abstract. This paper describes recent developments based on advances in coastal ocean forecasting in the fields of numerical modeling, data assimilation, and observational array design, exemplified by the Coastal Observing System for the North and Arctic Seas (COSYNA). The region of interest is the North and Baltic seas, and most of the coastal examples are for the German Bight. Several pre-operational applications are presented to demonstrate the outcome of using the best available science in coastal ocean predictions. The applications address the nonlinear behavior of the coastal ocean, which for the studied region is manifested by the tidal distortion and generation of shallow-water tides. Led by the motivation to maximize the benefits of the observations, this study focuses on the integration of observations and modeling using advanced statistical methods. Coastal and regional ocean forecasting systems do not operate in isolation but are linked, either weakly by using forcing data or interactively using two-way nesting or unstructured-grid models. Therefore, the problems of downscaling and upscaling are addressed, along with a discussion of the potential influence of the information from coastal observatories or coastal forecasting systems on the regional models. One example of coupling coarse-resolution regional models with a fine-resolution model interface in the area of straits connecting the North and Baltic seas using a two-way nesting method is presented. Illustrations from the assimilation of remote sensing, in situ and high-frequency (HF) radar data, the prediction of wind waves and storm surges, and possible applications to search and rescue operations are also presented. Concepts for seamless approaches to link coastal and regional forecasting systems are exemplified by the application of an unstructured-grid model for the Ems Estuary.

2016 ◽  
Author(s):  
Emil V. Stanev ◽  
Johannes Schulz-Stellenfleth ◽  
Joanna Staneva ◽  
Sebastian Grayek ◽  
Sebastian Grashorn ◽  
...  

Abstract. In the past years, the Helmholtz Zentrum Geesthacht put in place the Coastal Observing System for the North and Arctic Seas (COSYNA) in the frame of which different aspects of forecasting the marine environment have been developed. This paper describes these developments, which are based on recent advances in coastal ocean forecasting in the field of numerical modelling, data assimilation and observational array design. The region of interest is the North and Baltic Sea; most of the coastal examples discussed in the paper are for the German Bight. Several pre-operational applications are presented exemplifying the outcome of using the best available science in coastal ocean predictions. They help to identify new challenges; most of them are associated with resolving the non-linear behavior of coastal ocean, which for the studied region, is manifested by the tidal distortion and generation of shallow-water tides. Led by the motivation to maximize the benefit from observations, the authors focus on the integration of observations and modelling by using advanced statistical methods. The coastal and regional ocean forecasting systems do not run in isolation, but are linked, either weakly by just using forcing data, or interactively by using two-way nesting or unstructured-grid models. Therefore the problem of downscaling and upscaling, which currently attracts much attention, is also addressed. One example shown is the coupling of the coarse-resolution regional models by using a two-way nesting method with fine resolution in the area of connecting straits. The major part of the paper presents illustrations from assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as possible applications to search and rescue operations, and modelling support for assessing the environmental impact of wind parks. Concepts for seamless approaches to link coastal and regional forecasting systems are also presented and the two examples given illustrate (1) an application of unstructured-grid model for the Ems Estuary, and (2) the potential influence of the information from coastal observatories or coastal forecasting systems on the regional models.


Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 569-583 ◽  
Author(s):  
E. V. Stanev ◽  
J. Schulz-Stellenfleth ◽  
J. Staneva ◽  
S. Grayek ◽  
J. Seemann ◽  
...  

Abstract. A coastal observing system for Northern and Arctic Seas (COSYNA) aims at construction of a long-term observatory for the German part of the North Sea, elements of which will be deployed as prototype modules in Arctic coastal waters. At present a coastal prediction system deployed in the area of the German Bight integrates near real-time measurements with numerical models in a pre-operational way and provides continuously state estimates and forecasts of coastal ocean state. The measurement suite contributing to the pre-operational set up includes in situ time series from stationary stations, a High-Frequency (HF) radar system measuring surface currents, a FerryBox system and remote sensing data from satellites. The forecasting suite includes nested 3-D hydrodynamic models running in a data-assimilation mode, which are forced with up-to-date meteorological forecast data. This paper reviews the present status of the system and its recent upgrades focusing on developments in the field of coastal data assimilation. Model supported data analysis and state estimates are illustrated using HF radar and FerryBox observations as examples. A new method combining radial surface current measurements from a single HF radar with a priori information from a hydrodynamic model is presented, which optimally relates tidal ellipses parameters of the 2-D current field and the M2 phase and magnitude of the radials. The method presents a robust and helpful first step towards the implementation of a more sophisticated assimilation system and demonstrates that even using only radials from one station can substantially benefit state estimates for surface currents. Assimilation of FerryBox data based on an optimal interpolation approach using a Kalman filter with a stationary background covariance matrix derived from a preliminary model run which was validated against remote sensing and in situ data demonstrated the capabilities of the pre-operational system. Data assimilation significantly improved the performance of the model with respect to both SST and SSS and demonstrated a good skill not only in the vicinity of the Ferry track, but also over larger model areas. The examples provided in this study are considered as initial steps in establishing new coastal ocean products enhanced by the integrated COSYNA-observations and numerical modelling.


2011 ◽  
Vol 8 (2) ◽  
pp. 829-872 ◽  
Author(s):  
E. V. Stanev ◽  
J. Schulz-Stellenfleth ◽  
J. Staneva ◽  
S. Grayek ◽  
J. Seemann ◽  
...  

Abstract. A coastal observing system for Northern and Arctic Seas (COSYNA) aims at construction of a long-term observatory for the German part of the North Sea, elements of which will be deployed as prototype modules in Arctic coastal waters. At present a coastal prediction system deployed in the area of the German Bight integrates near real-time measurements with numerical models in a pre-operational way and provides continuously state estimates and forecasts of coastal ocean state. The measurement suite contributing to the pre-operational set up includes in situ time series from stationary stations, a High-Frequency (HF) radar system measuring surface currents, a FerryBox system and remote sensing data from satellites. The forecasting suite includes nested 3-D hydrodynamic models running in a data-assimilation mode, which are forced with up-to-date meteorological forecast data. This paper reviews the present status of the system and its recent upgrades focusing on developments in the field of coastal data assimilation. Model supported data analysis and state estimates are illustrated using HF radar and FerryBox observations as examples. A new method combining radial surface current measurements from a single HF radar with a priori information from a hydrodynamic model is presented, which optimally relates tidal ellipses parameters of the 2-D current field and the M2 phase and magnitude of the radials. The method presents a robust and helpful first step towards the implementation of a more sophisticated assimilation system and demonstrates that even using only radials from one station can substantially benefit state estimates for surface currents. Assimilation of FerryBox data based on an optimal interpolation approach using a Kalman filter with a stationary background covariance matrix derived from a preliminary model run which was validated against remote sensing and in situ data demonstrated the capabilities of the pre-operational system. Data assimilation significantly improved the performance of the model with respect to both SST and SSS and demonstrated a good skill not only in the vicinity of the Ferry track, but also over larger model areas. The examples provided in this study are considered as initial steps in establishing new coastal ocean products enhanced by the integrated COSYNA-observations and numerical modelling.


2015 ◽  
Vol 32 (2) ◽  
pp. 256-281 ◽  
Author(s):  
E. V. Stanev ◽  
F. Ziemer ◽  
J. Schulz-Stellenfleth ◽  
J. Seemann ◽  
J. Staneva ◽  
...  

AbstractAn observation network operating three Wellen Radars (WERAs) in the German Bight, which are part of the Coastal Observing System for Northern and Arctic Seas (COSYNA), is presented in detail. Major consideration is given to expanding the patchy observations over the entire German Bight on a 1-km grid and producing state estimates at intratidal scales, and 6- and 12-h forecasts. This was achieved with the help of the proposed spatiotemporal optimal interpolation (STOI) method, which efficiently uses observations and simulations from a free model run within an analysis window of one or two tidal cycles. In this way the method maximizes the use of available observations and can be considered as a step toward the “best surface current estimate.” The performance of the analysis was investigated based on the achieved reduction of the misfit between model and observations. The complex dynamics of the study domain was illustrated based on the spatial and temporal changes of tidal ellipses for the M2 and M4 constituents from HF radar observations. It was demonstrated that blending observations and numerical modeling facilitates physical interpretation of processes such as the nonlinear distortion of the Kelvin wave in the coastal zone and in particular in front of the Elbe and Weser estuaries. Comparisons with in situ data acquired outside the area covered by the HF radar demonstrated that the analysis method is able to propagate the HF radar information to larger spatial scales.


2015 ◽  
Vol 12 (6) ◽  
pp. 3169-3197
Author(s):  
J. Staneva ◽  
K. Wahle ◽  
H. Günther ◽  
E. Stanev

Abstract. This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved nonlinear feedback between strong tidal currents and wind-waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to producing reliable nowcasts and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the effects which the circulation exerts on the wind waves are tested for the coastal areas using different parameterizations. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.


Ocean Science ◽  
2016 ◽  
Vol 12 (3) ◽  
pp. 797-806 ◽  
Author(s):  
Joanna Staneva ◽  
Kathrin Wahle ◽  
Heinz Günther ◽  
Emil Stanev

Abstract. This study addresses the impact of coupling between wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved non-linear feedback between strong currents and wind waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to produce reliable nowcasts and short-term forecasts of ocean state variables, including waves and hydrodynamics. The database includes ADCP observations and continuous measurements from data stations. The individual and combined effects of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. The combined role of wave effects on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the response, which the circulation exerts on the waves, is tested for the coastal areas. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wave effects in circulation models.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2021 ◽  
Author(s):  
Mauro Cirano ◽  
Guillaume Charria ◽  
Pierre De Mey-Frémaux ◽  
Vassiliki H. Kourafalou ◽  
Emil Stanev

Sign in / Sign up

Export Citation Format

Share Document