sicily channel
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 18 (24) ◽  
pp. 6377-6392
Author(s):  
Léo Berline ◽  
Andrea Michelangelo Doglioli ◽  
Anne Petrenko ◽  
Stéphanie Barrillon ◽  
Boris Espinasse ◽  
...  

Abstract. Together with T–S properties, particle abundance in situ measurements are useful to discriminate water masses and derive circulation patterns. In the upper layers of the Ionian Sea, the fresher Atlantic Waters (AW) recently crossing the Sicily Channel meet the resident and saltier AW, which circulated cyclonically in the eastern basin and modified after evaporation and eventually cooling. In May 2017, during the PEACETIME cruise, fluorescence and particle abundance sampled at high resolution revealed unexpected heterogeneity in the central Ionian Sea. Surface salinity measurements, together with altimetry-derived and hull-mounted acoustic Doppler current profiler (ADCP) currents, describe a zonal pathway of AW entering the Ionian Sea, consistent with the so-called cyclonic mode in the North Ionian Gyre. The ION-Tr transect, located between 19–20∘ E at approximately 36∘ N, turned out to be at the crossroads of three water masses, mostly coming from the west, north and an isolated anticyclonic eddy northeast of ION-Tr. Using Lagrangian numerical simulations, we suggest that the contrast in particle loads along ION-Tr originates from particles transported from these three different water masses. Waters from the west, identified as AW carried by a strong southwestward jet, were moderate in particle load, probably originating from the Sicily Channel. The water mass from the north, carrying abundant particles, probably originated in the northern Ionian Sea, or further away from the south Adriatic Sea. Waters from the eddy, depleted in particles and chl a, may originate from south of the Peloponnese, where the Pelops eddy forms. The central Ionian Sea hence appears as a mosaic area, where waters of contrasted biological history meet. This contrast is particularly clear in spring, when blooming and non-blooming areas co-occur. Interpreting the complex dynamics of physical–biogeochemical coupling from discrete measurements made at isolated stations at sea is a challenge. The combination of multiparametric in situ measurements at high resolution with remote sensing and Lagrangian modeling appears as one adequate way to address this challenge.


2021 ◽  
pp. 103582
Author(s):  
Sergio Trias-Navarro ◽  
Isabel Cacho ◽  
Maria de la Fuente ◽  
Leopoldo D. Pena ◽  
Jaime Frigola ◽  
...  
Keyword(s):  

Author(s):  
Pauline Galea ◽  
Matthew R. Agius ◽  
George Bozionelos ◽  
Sebastiano D’Amico ◽  
Daniela Farrugia

Abstract The Sicily Channel, situated on the leading edge of the African plate as it collides with Europe, presents a range of interesting and complex tectonic processes that have developed in response to various regional stress fields. The characterization and interpretation of the seismic activity, however, still presents a challenge. The Maltese islands, lying approximately 100 km to the south of Sicily, are known to have been affected by a number of earthquakes in the Channel, with some of these events estimated to be very close to the islands. Yet, in the absence of nearby seismic instruments, an accurate evaluation and mapping of small magnitude seismicity, and, hence, the identification of unmapped active faults in the region, remains a challenge. This situation is being partially addressed through the deployment of more seismic stations on the Maltese archipelago. The Malta Seismic Network (MSN; International Federation of Digital Seismograph Networks code ML, see Data and Resources), managed by the Seismic Monitoring and Research Group, within the Department of Geosciences, University of Malta, currently comprises eight broadband, three-component stations covering an area of, approximately, 315  km2. Continuous seismic monitoring is possible following upgrades to real-time data transmission and automated epicenter location, coupled with a virtual seismic network established through SeisComP3, and focused mainly on the Mediterranean region. Such a dense national network, besides improving epicentral location in the Sicily Channel, will provide valuable information on microearthquake activity known to occur in close proximity to the islands, which has been very difficult to study in the past. It will also provide opportunities to study shallow crustal structure, site response on different geological substrates, microseismic noise propagation, and effects of anthropogenic activities. Here, we give a technical description of the MSN and an appraisal of its potential.


2021 ◽  
Author(s):  
Alina Polonia ◽  
Andrea Artoni ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini ◽  
...  

<p>Africa-Eurasia plate convergence and the retreat of the subducting slab led to the consumption of the Tethys ocean lithosphere, which has now mostly disappeared below or accreted/exhumed within the Alps/Apennines. Slab tearing plays a major role in plate boundary evolution, asthenospheric upwelling, dynamic topography and magmatism. However, the role played by structural inheritance on the Africa plate is not well constrained. Based on seismological, geodetic and marine geophysical data, we analyse the pattern of crustal deformation in the Calabrian Arc and Sicily Channel, two key regions to unravel the complex Africa/Eurasia plate interaction in the central Mediterranean Sea.</p><p>The Calabrian Arc subduction-rollback system accommodates Africa/Eurasia plate convergence along thrust faults developing both in the frontal and inner domains of the accretionary wedge. However, the most intriguing and tectonically active features are represented by arc-orthogonal faults deforming the subduction system along a complex strike-slip/transtensional pattern that may have been the source of major earthquakes in the Calabrian Arc. Deformation along the lithospheric transtensional faults is punctuated by buried sub-circular magnetized bodies aligned with Mt. Etna, that were interpreted as serpentinite/mud diapirs intruding the subduction system from the lower plate mantle. These faults are part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments of the Calabrian Arc. To the West, the Sicily Channel is part of the Pelagian block and experienced a lithospheric-scale continental rifting starting from the late Miocene with the development of NW-SE-trending tectonic depressions, bordered by crustal normal faults with variable throws. Our geophysical data, however, show that the most active tectonic feature in the area is a N-S trending and ~220-km-long lithospheric fault system characterized by volcanism, high heat flow and seismic activity. The NW-SE elongated rifting pattern, considered the first order structure in this region, appears currently inactive and sealed by undeformed Pleistocene deposits suggesting a recent change in structural development.</p><p>Seismological data show that the lithospheric boundaries present in the Calabrian Arc and Sicily Channel correlate well with spatial changes in the depth distribution of earthquakes and separate regions with different Moho depths and thickness of the seismogenic layer. We propose that these boundaries may represent long-lived inherited Mesozoic discontinuities controlling plate boundary evolution and neotectonics.</p>


2021 ◽  
Author(s):  
Leo Berline ◽  
Andrea Doglioli ◽  
Anne Petrenko ◽  
Stephanie Barrillon ◽  
Boris Espinasse ◽  
...  

<p><span>In the </span><span>upper</span><span> layers of the Ionian Sea, young Mediterranean Atlantic Waters (MAW) flowing eastward from the Sicily channel meet old MAW. In May 2017, during the PEACETIME cruise, </span><span>fluorescence and particle content sampled at high resolution revealed unexpected heterogeneity in the central Ionian. Surface salinity measurements, together with altimetry-derived and hull-mounted ADCP currents, describe a zonal pathway of AW entering the Ionian Sea, consistent with the so-called cyclonic mode in the North Ionian Gyre. The ION-Tr transect, located ~19-20°E- ~36°N turned out to be at the crossroad of three water masses, mostly coming from the west, north and from an isolated anticyclonic eddy northeast of ION-Tr. Using Lagrangian numerical simulations, we suggest that the contrast in particle loads </span><span>along </span><span>ION-Tr originates from particles transported from these three different water masses. Waters from the west, identified as young AW carried by a strong southwestward jet, were intermediate in particle load, probably originating from the Sicily channel. Water mass originating from the north was carrying abundant particles, probably originating from northern Ionian, or further from the south Adriatic. Waters from the eddy, depleted in particles and Chl-a may originate from south of Peloponnese, where the Pelops eddy forms. </span></p><p><span>The central Ionian Sea hence appears as a mosaic area, where waters of contrasted biological history meet. This contrast is particularly clear in spring, when blooming and non-blooming areas co-occur. </span></p><p><span>High resolution measurements reveal a high heterogeneity in properties such as particles abundances. To interpret these distributions, </span><span>combination of multiparametric </span><span><em>in situ</em></span><span> measurements with remote sensing and Lagrangian modeling appears </span><span>necessary</span><span>. </span></p>


2021 ◽  
Author(s):  
Matthew Agius ◽  
Fabrizio Magrini ◽  
Giovanni Diaferia ◽  
Fabio Cammarano ◽  
Claudio Faccenna ◽  
...  

<p>The Central Mediterranean, the area encompassing Italy, Sardinia, Tunisia and Libya, is characterised by multiple tectonic processes (plate convergence, subduction, and backarc extension). The evolution and interaction of the plate margins within this relatively small area are still being unravelled particularly at the adjacent region known as the Sicily Channel located between Sicily, Tunisia, Libya and Malta. This Channel is characterised by a seismically and volcanically active rift zone. Much of the observations we have today for the southern parts of the Calabrian arc are either limited to the surface and the upper crust, or are broader and deeper from regional seismic tomography, missing important details about the lithospheric structure and dynamics. The project GEOMED (https://geomed-msca.eu) addresses this issue by processing all the seismic data available in the region in order to understand better the geodynamics of the Central Mediterranean.</p><p>We measure Rayleigh- and Love-wave phase velocities from ambient seismic noise recordings to infer the structures of the Central Mediterranean, from the Central Apennines to the African foreland, with a special focus on the Sicily Channel Rift Zone (SCRZ). The phase-velocity dispersion curves have periods ranging from 5 to 100 seconds and sample through the entire lithosphere. We invert the dispersion data for isotropic and polarised shear velocities with depth and infer crustal thickness and patterns of radial anisotropy. We find that continental blocks have thick crust (30-50 km), whereas beneath the SCRZ the crust is thin (<25 km), and thinner beneath the Tyrrhenian Sea. Beneath the SCRZ and the Tyrrhenian Sea, the crustal shear velocities are characterised by positive radial anisotropy (V<sub>SH</sub>>V<sub>SV</sub>) indicative of horizontal flow or extension, whereas the uppermost mantle is characterised by slow shear velocities indicative of warmer temperatures and strong negative radial anisotropy (V<sub>SH</sub>>V<sub>SV</sub>) indicative of vertical flow. We discuss the relevance of these findings together with other geophysical studies such as the regional seismicity and GPS velocity vectors to identify the rifting process type of the SCRZ.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 843696.</p>


2021 ◽  
Author(s):  
Pauline Galea ◽  
Matthew Agius ◽  
George Bozionelos ◽  
Sebastiano D'Amico ◽  
Daniela Farrugia

<p>The Maltese islands are a small country 15 km wide by 30 km long located about 100 km south of Sicily, Italy. Since 2015 Malta has set up a national seismic network. The primary aim of this network is to monitor in real-time and to locate more accurately the seismicity close to the islands and the seismicity in the Sicily Channel, offshore between Sicily, Tunisia and Libya. This Channel presents a range of interesting and complex tectonic processes that have developed in response to various regional stress fields mainly as a result of the collision between the African plate with Europe. The Maltese islands are known to have been affected by a number of earthquakes originating in the Channel, with some of these events estimated to be very close to the islands.</p><p>The seismotectonic characteristics of the Sicily channel, particularly south of the Maltese islands, is not well understood. This situation is being partially addressed through an increase in the number of seismic stations on the Maltese archipelago. The Malta Seismic Network (FDSN code ML), managed by the Seismic Monitoring and Research Group, within the Department of Geosciences, University of Malta, currently comprises 8 broadband, 3-component stations over an area slightly exceeding 300 km<sup>2</sup>. We present a technical description of the MSN including quality control tests such as spectral analysis (Power Spectral Density and HVSR), station orientations and timings as well as examples of local and regional earthquakes recorded on the network. We describe the upgrades to real-time data transmission and archiving, and automated epicentre location for continuous seismic monitoring using the local network amalgamated with a virtual seismic network to monitor the seismicity in the extended Mediterranean region. Such a dense national network, besides improving epicentral location in the Sicily Channel, is providing valuable information on microearthquake activity known to occur in close proximity to the islands, which has been very difficult to study in the past. It also provides an important tool for analysing site response and site amplification related to underlying geology, which constitutes a major component of seismic hazard analysis on the islands. Furthermore, the increase in seismic stations to the seismic monitoring system provides more robust earthquake estimates for the tsunami monitoring/simulation system.</p><p>Funding for stations was provided by Interreg Italia-Malta projects (SIMIT and SIMIT-THARSY, Codes B1-2.19/11 and C1-3.2-57) and by Transport Malta.</p>


2021 ◽  
Author(s):  
Giulia Penza ◽  
Pietro Paolo Pierantoni ◽  
Chiara Macchiavelli ◽  
Eugenio Turco

<p>Sicily is in the centre of an area where complex geodynamic processes work together, these are: the Tyrrhenian-Apennine System evolution, the African-Ionian slab subduction and Africa-Europe collision.</p><p>During the last 5 Ma it was involved in a process of escape towards east-southeast: while on one side Africa acted as an intender pushing toward north, on the other side the fragmentation and retreat of the African-Ionian slab created space to the east.</p><p>The aim of this study is to reconstruct the kinematic evolution of Sicily, here considered as an independent plate starting from 5 Ma ago, and its role in the context of the Tyrrhenian-Apennine system.</p><p>The plates and microplate involved in the evolution are Europe, Africa and Calabria. The boundaries between these and Sicily are the margin of the Sicily microplate and are lithospheric structures known from the literature and identifiable from high resolution bathymetric maps, seismic sections, geodetic data, focal mechanism of recent earthquakes, gravimetric maps, lithosphere thickness maps and so on.</p><p>Briefly the margin between Sicily and Europe is along the Elimi chain, a E-W trending morpho-structure with transpressive kinematics, the margin with Calabria microplate is along the right-lateral Taormina line and the margin with Africa is expressed along the Malta Escarpment, south of Etna Mount, with transpressive kinematics and along the Sicily Channel, where a series of troughs (Pantelleria, Linosa and Malta) were interpreted in literature as pull-apart basins related to a dextral trascurrent zone.</p><p>The Euler pole of rotation between Sicily and Africa was found starting from the structures in the Sicily Channel and using the GPlates software, then we were able to find also Sicily-Europe and Sicily-Calabria poles and the respective velocity vectors and to compare these with the geological data and better refine the model.</p>


2021 ◽  
Author(s):  
Eline Le Breton ◽  
Mirko Carlini ◽  
Robert Neumeister ◽  
Jessica Ecke ◽  
Nicolo Chizzini ◽  
...  

<p>The Alpine-Mediterranean belt is remarkable because of the strong arcuation of its subduction front and the abundance of extensional basins developed within an overall compressional setting. Both resulted from rapid slab rollback and trench retreat especially in Neogene time, accompanied by upper-plate extension and the opening of the Western Mediterranean basins. The Strait of Sicily is a very interesting geological area in the Western-Central Mediterranean, as it has undergone tectonic extension and opening of a rift zone (Sicily Channel Rift Zone, SCRZ) on the lower plate (Africa) of the subduction zone, marked by the Gela Front and the Calabrian Accretionary Wedge, located south and south-east of Sicily, respectively. Furthermore, the SCRZ is important for understanding and quantifying the independent motion and counter-clockwise rotation of the Adriatic plate in Neogene time (Le Breton et al. 2017). However, the exact timing, tectonic style and amount of deformation along the SCRZ remain unclear.</p><p>To tackle these questions, we re-evaluate multichannel seismic reflection profiles across the SCRZ (CROP seismic lines M24 and M25), as well as a series of seismic lines correlated with boreholes data from the VIDEPI project (www.videpi.com). Main stratigraphic horizons and tectonic structures are mapped in a 3D database using the MOVE Software (provided by Petex). Preliminary results indicate ~30 km of NE-SW extension through the Pantelleria Rift and onset of syn-rift deposition during the upper Messinian, which could be related with the fast slab retreat of the Calabrian Arc.</p><p> </p><p><strong>References:</strong></p><p>Le Breton E., M.R. Handy, G. Molli and K. Ustaszewski (2017)<strong>. </strong>Post-20 Ma motion of the Adriatic plate – new constrains from surrounding orogens and implications for crust-mantle decoupling, Tectonics, doi:10.1002/2016TC004443</p>


Sign in / Sign up

Export Citation Format

Share Document