F-Region nightglow emissions of atomic oxygen: 2. Analysis of 6300 A and electron density data

1966 ◽  
Vol 71 (9) ◽  
pp. 2267-2277 ◽  
Author(s):  
Vern L. Peterson ◽  
Walter R. Steiger
2019 ◽  
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua

Abstract. During the night, in the F-region, equatorial ionospheric irregularities manifest as plasma depletions observed by satellites and may cause radio signals to fluctuate. In this study, the distribution characteristics of ionospheric F-region irregularities in the low latitudes were investigated using 16 Hz electron density observations made by the faceplate on board Swarm satellites of the European Space Agency (ESA). The study covers the period from October 2014 to October 2018 when the 16 Hz electron density data were available. For comparison, both the absolute (ΔNe) and relative (ΔNe/Ne) density perturbations were used to quantify the level of ionospheric irregularities. The two methods generally reproduced the local time, seasonal and longitudinal distribution of equatorial ionospheric irregularities as shown in earlier studies, demonstrating the ability of Swarm 16 Hz electron density data. A difference between the two methods was observed based on the latitudinal distribution of ionospheric irregularities where ΔNe showed a symmetrical distribution about the magnetic equator, whereas ΔNe/Ne showed a magnetic equator centered Gaussian distribution. High values of ΔNe and ΔNe/Ne were observed in spatial bins with steep gradients of electron density from a longitudinal and seasonal perspective. The response of ionospheric irregularities to geomagnetic and solar activities was also investigated using Kp index and solar radio flux index (F10.7), respectively. A weak positive correlation was obtained between the occurrence of ionospheric irregularities and Kp index, irrespective of the method adopted to quantify the irregularities. In general, both ΔNe and ΔNe/Ne showed a weak positive correlation with F10.7. However, a higher positive correlation was obtained between ΔNe and F10.7 compared to ΔNe/Ne. Using the high-resolution faceplate data, we were able to identify ionospheric irregularities of scales of only a few hundreds of meters.


2020 ◽  
Vol 38 (1) ◽  
pp. 243-261 ◽  
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua

Abstract. During the night, in the F-region, equatorial ionospheric irregularities manifest as plasma depletions observed by satellites, and they may cause radio signals to fluctuate. In this study, the distribution characteristics of ionospheric F-region irregularities in the low latitudes were investigated using 16 Hz electron density observations made by a faceplate which is a component of the electric field instrument (EFI) onboard Swarm satellites of the European Space Agency (ESA). The study covers the period from October 2014 to October 2018 when the 16 Hz electron density data were available. For comparison, both the absolute (dNe) and relative (dNe∕Ne) density perturbations were used to quantify the level of ionospheric irregularities. The two methods generally reproduced the local-time (LT), seasonal and longitudinal distribution of equatorial ionospheric irregularities as shown in earlier studies, demonstrating the ability of Swarm 16 Hz electron density data. A difference between the two methods was observed based on the latitudinal distribution of ionospheric irregularities where (dNe) showed a symmetrical distribution about the magnetic equator, while dNe∕Ne showed a magnetic-equator-centred Gaussian distribution. High values of dNe and dNe∕Ne were observed in spatial bins with steep gradients of electron density from a longitudinal and seasonal perspective. The response of ionospheric irregularities to geomagnetic and solar activities was also investigated using Kp index and solar radio flux index (F10.7), respectively. The reliance of dNe∕Ne on solar and magnetic activity showed little distinction in the correlation between equatorial and off-equatorial latitudes, whereas dNe showed significant differences. With regard to seasonal and longitudinal distribution, high dNe and dNe∕Ne values were often found during quiet magnetic periods compared to magnetically disturbed periods. The dNe increased approximately linearly from low to moderate solar activity. Using the high-resolution faceplate data, we were able to identify ionospheric irregularities on the scale of only a few hundred of metres.


1977 ◽  
Vol 20 (12) ◽  
pp. 1267-1270 ◽  
Author(s):  
Yu. A. Ignat'ev ◽  
Z. N. Krotova ◽  
�. E. Mityakova

1997 ◽  
Vol 15 (8) ◽  
pp. 984-998 ◽  
Author(s):  
A. V. Pavlov

Abstract. This study compares the OV1-10 satellite measurements of the integral airglow intensities at 630 nm in the SAR arc regions observed in the northern and southern hemisphere as a conjugate phenomenon, with the model results obtained using the time-dependent one-dimensional mathematical model of the Earth ionosphere and plasmasphere (the IZMIRAN model) during the geomagnetic storm of the period 15–17 February 1967. The major enhancements to the IZMIRAN model developed in this study are the inclusion of He+ ions (three major ions: O+, H+, and He+, and three ion temperatures), the updated photochemistry and energy balance equations for ions and electrons, the diffusion of NO+ and O2+ ions and O(1D) and the revised electron cooling rates arising from their collisions with unexcited N2, O2 molecules and N2 molecules at the first vibrational level. The updated model includes the option to use the models of the Boltzmann or non-Boltzmann distributions of vibrationally excited molecular nitrogen. Deviations from the Boltzmann distribution for the first five vibrational levels of N2 were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels v > 2 and leads to a decrease in the calculated electron density and integral intensity at 630 nm in the northern and southern hemispheres in comparison with the electron density and integral intensity calculated using the Boltzmann vibrational distribution of N2. It is found that the intensity at 630 nm is very sensitive to the oxygen number densities. Good agreement between the modelled and measured intensities is obtained provided that at all altitudes of the southern hemisphere a reduction of about factor 1.35 in MSIS-86 atomic oxygen densities is included in the IZMIRAN model with the non-Boltzmann vibrational distribution of N2. The effect of using of the O(1D) diffusion results in the decrease of 4–6% in the calculated integral intensity of the northern hemisphere and 7–13% in the calculated integral intensity of the southern hemisphere. It is found that the modelled intensities of the southern hemisphere are more sensitive to the assumed values of the rate coefficients of O+(4S) ions with the vibrationally excited nitrogen molecules and quenching of O+(2D) by atomic oxygen than the modelled intensities of the northern hemisphere.


1992 ◽  
Vol 70 (7) ◽  
pp. 569-574 ◽  
Author(s):  
M. Förster ◽  
N. Jakowski ◽  
A. Best ◽  
J. Smilauer

Langmuir probe data obtained during the storm period March 20–23, 1990, on board the MAGION-2 subsatellite of the ACTIVNY experiment are analyzed to study the plasmaspheric and ionospheric response to a magnetic storm. The data indicate a well-pronounced equatorward edge of the electron density trough in the afternoon (18:15 LT) at about 800 km height that moves towards lower latitudes during the course of the storm. It is interesting to note that the electron density inside the plasmasphere is increased by more than 20% in the morning shortly after sunrise (07:30 LT). This is due to enhanced O+ densities in the lower plasmasphere during the growth phase of the geomagnetic storm as measured by the ion mass spectrometer NAM-5 onboard the main satellite. It is suggested that the source for the increased density is thermospheric Joule heating at auroral latitudes with a commensurate increase in thermospheric pressure. This increased pressure causes the local thermosphere to expand both upward and equatorward. The increased atomic-oxygen scale height coupled with equatorward motion of fhermospheric perturbations results in an increased O density and resulting O+ density within the lower plasmasphere. The observations indicate a storm-induced compression of the plasmasphere that favourizes an enhanced outflow of plasma into the ionosphere leading to an increased nighttime F2-layer ionization and a depletion of the plasmasphere during the following hours.


2018 ◽  
Vol 36 (3) ◽  
pp. 809-823 ◽  
Author(s):  
Navin Parihar ◽  
Sandro Maria Radicella ◽  
Bruno Nava ◽  
Yenca Olivia Migoya-Orue ◽  
Prabhakar Tiwari ◽  
...  

Abstract. Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat.  ∼  16.30° N), located near the crest of the Appleton anomaly in India during September–December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3) electron density profiles. Next, the electron density maximum (Nm) and its height (hmF2) of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA) and the midnight temperature maximum (MTM) phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7–3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.


2003 ◽  
Vol 21 (12) ◽  
pp. 2323-2328 ◽  
Author(s):  
R. S. Dabas ◽  
L. Kersley

Abstract. Nighttime enhancements in ionospheric electron content (IEC)/peak electron density (NmF2) have been studied by various workers in the equatorial anomaly and mid-latitude regions. Such studies give an idea about their enhancement over that location only. In the present study tomographic images over the UK, which give a latitudinal versus height distributions of ionospheric electron density in a much wider area, have been used to study the anomalous increases in nighttime F-region electron density at mid-latitudes. From the analysis of four seasonal representative months (November 1997, March, June and October 1998) data it was noted that the majority of the cases of nighttime enhancements were observed after local midnight, with a maximum between 03:00–04:00 LT in the month of November 1997. Enhancements were observed mostly between 45–50° N latitudes, and their positions are not affected by magnetic activity (Kp ) variations, whereas the separation between the mid-latitude trough and enhancement decreases with increases in magnetic activity. This finding shows that only the trough moves equatorward with the increase in magnetic activity. It is also noted that the electron density gradient from the trough to the enhancement increases with an increase in Kp. Results are discussed in terms of downward plasma transport from the protonosphere to the ionosphere and the nighttime neutral winds.Key words. Ionosphere (mid-latitude ionosphere; modeling and forecasting; instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document