Discussion of paper by F. L. Scarf, ‘Effect of coherent density fluctuations on the radar determination of total electron content’

1967 ◽  
Vol 72 (17) ◽  
pp. 4595-4598 ◽  
Author(s):  
Tor Hagfors
2019 ◽  
Vol 178 ◽  
pp. 104696 ◽  
Author(s):  
Kirk M. Scanlan ◽  
Cyril Grima ◽  
Gregor Steinbrügge ◽  
Scott D. Kempf ◽  
Duncan A. Young ◽  
...  

2004 ◽  
Vol 22 (8) ◽  
pp. 2741-2746 ◽  
Author(s):  
N. Beloff ◽  
P. F. Denisenko ◽  
I. I. Ivanov ◽  
O. A. Maltseva ◽  
M. P. Gough ◽  
...  

Abstract. A new experimental technique is presented for the determination of the total electron content (TEC) below a low-orbiting satellite. According to this technique TEC can be obtained using the segment of a topside ionogram that only contains the traces of signals reflected from the Earth's surface. Possibilities of this technique were demonstrated using MIR station topside sounding data at the night time for both quiet and disturbed ionospheric conditions, and in particular, during the 14 November 1998 storm. An interesting fact was revealed with the help of this technique: after a series of relatively strong storms the main ionospheric trough on 14 November 1998 was detected at an abnormally low geomagnetic latitude (~43°). During this study some spatial variations of TEC were registered that can be interpreted as a TID-type wave structure.


2021 ◽  
Vol 13 (13) ◽  
pp. 2609
Author(s):  
Aleksandra Nina ◽  
Jelena Radović ◽  
Giovanni Nico ◽  
Luka Č. Popović ◽  
Milan Radovanović ◽  
...  

In this work, we study the impact of high-energy radiation induced by solar X-ray flares on the determination of the temporal change in precipitable water vapor (ΔPWV) as estimated using the synthetic aperture radar (SAR) meteorology technique. As recent research shows, this radiation can significantly affect the ionospheric D-region and induces errors in the estimation of the total electron content (TEC) by the applied models. Consequently, these errors are reflected in the determination of the phase delay and in many different types of measurements and models, including calculations of meteorological parameters based on SAR observations. The goal of this study is to quantify the impact of solar X-ray flares on the estimation of ΔPWV and provide an estimate of errors induced if the vertical total electron content (VTEC) is obtained by single layer models (SLM) or multiple layer models (MLM) (these models do not include ionosphere properties below the altitude of 90 km as input parameters and cannot provide information about local disturbances in the D-region). The performed analysis is based on a known procedure for the determination of the D-region electron density (and, consequently, the vertical total electron content in the D-region (VTECD)) using ionospheric observations of very low frequency (VLF) radio waves. The main result indicates that if the D-region, perturbed by medium-sized and intense X-ray flares, is not modeled, errors occur in the determination of ΔPWV. This study emphasizes the need for improved MLMs for the estimation of the TEC, including observational data at D-region altitudes during medium-sized and intense X-ray flare events.


Sign in / Sign up

Export Citation Format

Share Document