Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty

1983 ◽  
Vol 19 (5) ◽  
pp. 1151-1162 ◽  
Author(s):  
George Kuczera
2021 ◽  
Author(s):  
Oscar O. Ortega ◽  
Blake A. Wilson ◽  
James C. Pino ◽  
Michael W. Irvin ◽  
Geena V. Ildefonso ◽  
...  

AbstractMathematical models of biomolecular networks are commonly used to study mechanisms of cellular processes, but their usefulness is often questioned due to parameter uncertainty. Here, we employ Bayesian parameter inference and dynamic network analysis to study dominant reaction fluxes in models of extrinsic apoptosis. Although a simplified model yields thousands of parameter vectors with equally good fits to data, execution modes based on reaction fluxes clusters to three dominant execution modes. A larger model with increased parameter uncertainty shows that signal flow is constrained to eleven execution modes that use 53 out of 2067 possible signal subnetworks. Each execution mode exhibits different behaviors to in silico perturbations, due to different signal execution mechanisms. Machine learning identifies informative parameters to guide experimental validation. Our work introduces a probability-based paradigm of signaling mechanisms, highlights systems-level interactions that modulate signal flow, and provides a methodology to understand mechanistic model predictions with uncertain parameters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingchao Jiang ◽  
Xiaoming Fu ◽  
Shifu Yan ◽  
Runlai Li ◽  
Wenli Du ◽  
...  

AbstractNon-Markovian models of stochastic biochemical kinetics often incorporate explicit time delays to effectively model large numbers of intermediate biochemical processes. Analysis and simulation of these models, as well as the inference of their parameters from data, are fraught with difficulties because the dynamics depends on the system’s history. Here we use an artificial neural network to approximate the time-dependent distributions of non-Markovian models by the solutions of much simpler time-inhomogeneous Markovian models; the approximation does not increase the dimensionality of the model and simultaneously leads to inference of the kinetic parameters. The training of the neural network uses a relatively small set of noisy measurements generated by experimental data or stochastic simulations of the non-Markovian model. We show using a variety of models, where the delays stem from transcriptional processes and feedback control, that the Markovian models learnt by the neural network accurately reflect the stochastic dynamics across parameter space.


Sign in / Sign up

Export Citation Format

Share Document