On Hydrologic Similarity: 1. Derivation of the Dimensionless Flood Frequency Curve

1986 ◽  
Vol 22 (11) ◽  
pp. 1549-1554 ◽  
Author(s):  
Eric F. Wood ◽  
Charles S. Hebson
2020 ◽  
Vol 6 (12) ◽  
pp. 2425-2436
Author(s):  
Andy Obinna Ibeje ◽  
Ben N. Ekwueme

Hydrologic designs require accurate estimation of quartiles of extreme floods. But in many developing regions, records of flood data are seldom available. A model framework using the dimensionless index flood for the transfer of Flood Frequency Curve (FFC) among stream gauging sites in a hydrologically homogeneous region is proposed.  Key elements of the model framework include: (1) confirmation of the homogeneity of the region; (2) estimation of index flood-basin area relation; (3) derivation of the regional flood frequency curve (RFFC) and deduction of FFC of an ungauged catchment as a product of index flood and dimensionless RFFC. As an application, 1983 to 2004 annual extreme flood from six selected gauging sites located in Anambra-Imo River basin of southeast Nigeria, were used to demonstrate that the developed index flood model: , overestimated flood quartiles in an ungauged site of the basin.  It is recommended that, for wider application, the model results can be improved by the availability and use of over 100 years length of flood data spatially distributed at critical locations of the watershed. Doi: 10.28991/cej-2020-03091627 Full Text: PDF


2000 ◽  
Vol 4 (3) ◽  
pp. 483-498 ◽  
Author(s):  
M. Franchini ◽  
A. M. Hashemi ◽  
P. E. O’Connell

Abstract. The sensitivity analysis described in Hashemi et al. (2000) is based on one-at-a-time perturbations to the model parameters. This type of analysis cannot highlight the presence of parameter interactions which might indeed affect the characteristics of the flood frequency curve (ffc) even more than the individual parameters. For this reason, the effects of the parameters of the rainfall, rainfall runoff models and of the potential evapotranspiration demand on the ffc are investigated here through an analysis of the results obtained from a factorial experimental design, where all the parameters are allowed to vary simultaneously. This latter, more complex, analysis confirms the results obtained in Hashemi et al. (2000) thus making the conclusions drawn there of wider validity and not related strictly to the reference set selected. However, it is shown that two-factor interactions are present not only between different pairs of parameters of an individual model, but also between pairs of parameters of different models, such as rainfall and rainfall-runoff models, thus demonstrating the complex interaction between climate and basin characteristics affecting the ffc and in particular its curvature. Furthermore, the wider range of climatic regime behaviour produced within the factorial experimental design shows that the probability distribution of soil moisture content at the storm arrival time is no longer sufficient to explain the link between the perturbations to the parameters and their effects on the ffc, as was suggested in Hashemi et al. (2000). Other factors have to be considered, such as the probability distribution of the soil moisture capacity, and the rainfall regime, expressed through the annual maximum rainfalls over different durations. Keywords: Monte Carlo simulation; factorial experimental design; analysis of variance (ANOVA)


2011 ◽  
Vol 408 (1-2) ◽  
pp. 67-77 ◽  
Author(s):  
F. Laio ◽  
D. Ganora ◽  
P. Claps ◽  
G. Galeati

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1931
Author(s):  
Alvaro Sordo-Ward ◽  
Ivan Gabriel-Martín ◽  
Paola Bianucci ◽  
Giuseppe Mascaro ◽  
Enrique R. Vivoni ◽  
...  

This study proposes a methodology that combines the advantages of the event-based and continuous models, for the derivation of the maximum flow and maximum hydrograph volume frequency curves, by combining a stochastic continuous weather generator (the advanced weather generator, abbreviated as AWE-GEN) with a fully distributed physically based hydrological model (the TIN-based real-time integrated basin simulator, abbreviated as tRIBS) that runs both event-based and continuous simulation. The methodology is applied to Peacheater Creek, a 64 km2 basin located in Oklahoma, United States. First, a continuous set of 5000 years’ hourly weather forcing series is generated using the stochastic weather generator AWE-GEN. Second, a hydrological continuous simulation of 50 years of the climate series is generated with the hydrological model tRIBS. Simultaneously, the separation of storm events is performed by applying the exponential method to the 5000- and 50-years climate series. From the continuous simulation of 50 years, the mean soil moisture in the top 10 cm (MSM10) of the soil layer of the basin at an hourly time step is extracted. Afterwards, from the times series of hourly MSM10, the values associated to all the storm events within the 50 years of hourly weather series are extracted. Therefore, each storm event has an initial soil moisture value associated (MSM10Event). Thus, the probability distribution of MSM10Event for each month of the year is obtained. Third, the five major events of each of the 5000 years in terms of total depth are simulated in an event-based framework in tRIBS, assigning an initial moisture state value for the basin using a Monte Carlo framework. Finally, the maximum annual hydrographs are obtained in terms of maximum peak-flow and volume, and the associated frequency curves are derived. To validate the method, the results obtained by the hybrid method are compared to those obtained by deriving the flood frequency curves from the continuous simulation of 5000 years, analyzing the maximum annual peak-flow and maximum annual volume, and the dependence between the peak-flow and volume. Independence between rainfall events and prior hydrological soil moisture conditions has been proved. The proposed hybrid method can reproduce the univariate flood frequency curves with a good agreement to those obtained by the continuous simulation. The maximum annual peak-flow frequency curve is obtained with a Nash–Sutcliffe coefficient of 0.98, whereas the maximum annual volume frequency curve is obtained with a Nash–Sutcliffe value of 0.97. The proposed hybrid method permits to generate hydrological forcing by using a fully distributed physically based model but reducing the computation times on the order from months to hours.


2007 ◽  
Vol 11 (4) ◽  
pp. 1515-1528 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) is shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


2000 ◽  
Vol 4 (3) ◽  
pp. 463-482 ◽  
Author(s):  
A. M. Hashemi ◽  
M. Franchini ◽  
P. E. O’Connell

Abstract. Regionalized and at-site flood frequency curves exhibit considerable variability in their shapes, but the factors controlling the variability (other than sampling effects) are not well understood. An application of the Monte Carlo simulation-based derived distribution approach is presented in this two-part paper to explore the influence of climate, described by simulated rainfall and evapotranspiration time series, and basin factors on the flood frequency curve (ffc). The sensitivity analysis conducted in the paper should not be interpreted as reflecting possible climate changes, but the results can provide an indication of the changes to which the flood frequency curve might be sensitive. A single site Neyman Scott point process model of rainfall, with convective and stratiform cells (Cowpertwait, 1994; 1995), has been employed to generate synthetic rainfall inputs to a rainfall runoff model. The time series of the potential evapotranspiration (ETp) demand has been represented through an AR(n) model with seasonal component, while a simplified version of the ARNO rainfall-runoff model (Todini, 1996) has been employed to simulate the continuous discharge time series. All these models have been parameterised in a realistic manner using observed data and results from previous applications, to obtain ‘reference’ parameter sets for a synthetic case study. Subsequently, perturbations to the model parameters have been made one-at-a-time and the sensitivities of the generated annual maximum rainfall and flood frequency curves (unstandardised, and standardised by the mean) have been assessed. Overall, the sensitivity analysis described in this paper suggests that the soil moisture regime, and, in particular, the probability distribution of soil moisture content at the storm arrival time, can be considered as a unifying link between the perturbations to the several parameters and their effects on the standardised and unstandardised ffcs, thus revealing the physical mechanism through which their influence is exercised. However, perturbations to the parameters of the linear routing component affect only the unstandardised ffc. In Franchini et al. (2000), the sensitivity analysis of the model parameters has been assessed through an analysis of variance (ANOVA) of the results obtained from a formal experimental design, where all the parameters are allowed to vary simultaneously, thus providing deeper insight into the interactions between the different factors. This approach allows a wider range of climatic and basin conditions to be analysed and reinforces the results presented in this paper, which provide valuable new insight into the climatic and basin factors controlling the ffc. Keywords: stochastic rainfall model; rainfall runoff model; simulation; derived distribution; flood frequency; sensitivity analysis


2012 ◽  
Vol 48 (5) ◽  
Author(s):  
M. Rogger ◽  
H. Pirkl ◽  
A. Viglione ◽  
J. Komma ◽  
B. Kohl ◽  
...  

2006 ◽  
Vol 3 (5) ◽  
pp. 3239-3277 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) are shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


Sign in / Sign up

Export Citation Format

Share Document