scholarly journals Stochastic Hybrid Event Based and Continuous Approach to Derive Flood Frequency Curve

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1931
Author(s):  
Alvaro Sordo-Ward ◽  
Ivan Gabriel-Martín ◽  
Paola Bianucci ◽  
Giuseppe Mascaro ◽  
Enrique R. Vivoni ◽  
...  

This study proposes a methodology that combines the advantages of the event-based and continuous models, for the derivation of the maximum flow and maximum hydrograph volume frequency curves, by combining a stochastic continuous weather generator (the advanced weather generator, abbreviated as AWE-GEN) with a fully distributed physically based hydrological model (the TIN-based real-time integrated basin simulator, abbreviated as tRIBS) that runs both event-based and continuous simulation. The methodology is applied to Peacheater Creek, a 64 km2 basin located in Oklahoma, United States. First, a continuous set of 5000 years’ hourly weather forcing series is generated using the stochastic weather generator AWE-GEN. Second, a hydrological continuous simulation of 50 years of the climate series is generated with the hydrological model tRIBS. Simultaneously, the separation of storm events is performed by applying the exponential method to the 5000- and 50-years climate series. From the continuous simulation of 50 years, the mean soil moisture in the top 10 cm (MSM10) of the soil layer of the basin at an hourly time step is extracted. Afterwards, from the times series of hourly MSM10, the values associated to all the storm events within the 50 years of hourly weather series are extracted. Therefore, each storm event has an initial soil moisture value associated (MSM10Event). Thus, the probability distribution of MSM10Event for each month of the year is obtained. Third, the five major events of each of the 5000 years in terms of total depth are simulated in an event-based framework in tRIBS, assigning an initial moisture state value for the basin using a Monte Carlo framework. Finally, the maximum annual hydrographs are obtained in terms of maximum peak-flow and volume, and the associated frequency curves are derived. To validate the method, the results obtained by the hybrid method are compared to those obtained by deriving the flood frequency curves from the continuous simulation of 5000 years, analyzing the maximum annual peak-flow and maximum annual volume, and the dependence between the peak-flow and volume. Independence between rainfall events and prior hydrological soil moisture conditions has been proved. The proposed hybrid method can reproduce the univariate flood frequency curves with a good agreement to those obtained by the continuous simulation. The maximum annual peak-flow frequency curve is obtained with a Nash–Sutcliffe coefficient of 0.98, whereas the maximum annual volume frequency curve is obtained with a Nash–Sutcliffe value of 0.97. The proposed hybrid method permits to generate hydrological forcing by using a fully distributed physically based model but reducing the computation times on the order from months to hours.

2007 ◽  
Vol 11 (4) ◽  
pp. 1515-1528 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) is shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


2006 ◽  
Vol 3 (5) ◽  
pp. 3239-3277 ◽  
Author(s):  
D. I. Kusumastuti ◽  
I. Struthers ◽  
M. Sivapalan ◽  
D. A. Reynolds

Abstract. The aim of this paper is to illustrate the effects of selected catchment storage thresholds upon runoff behaviour, and specifically their impact upon flood frequency. The analysis is carried out with the use of a stochastic rainfall model, incorporating rainfall variability at intra-event, inter-event and seasonal timescales, as well as infrequent summer tropical cyclones, coupled with deterministic rainfall-runoff models that incorporate runoff generation by both saturation excess and subsurface stormflow mechanisms. Changing runoff generation mechanisms (i.e. from subsurface flow to surface runoff) associated with a given threshold (i.e. saturation storage capacity) are shown to be manifested in the flood frequency curve as a break in slope. It is observed that the inclusion of infrequent summer storm events increases the temporal frequency occurrence and magnitude of surface runoff events, in this way contributing to steeper flood frequency curves, and an additional break in the slope of the flood frequency curve. The results of this study highlight the importance of thresholds on flood frequency, and provide insights into the complex interactions between rainfall variability and threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves.


2000 ◽  
Vol 4 (3) ◽  
pp. 483-498 ◽  
Author(s):  
M. Franchini ◽  
A. M. Hashemi ◽  
P. E. O’Connell

Abstract. The sensitivity analysis described in Hashemi et al. (2000) is based on one-at-a-time perturbations to the model parameters. This type of analysis cannot highlight the presence of parameter interactions which might indeed affect the characteristics of the flood frequency curve (ffc) even more than the individual parameters. For this reason, the effects of the parameters of the rainfall, rainfall runoff models and of the potential evapotranspiration demand on the ffc are investigated here through an analysis of the results obtained from a factorial experimental design, where all the parameters are allowed to vary simultaneously. This latter, more complex, analysis confirms the results obtained in Hashemi et al. (2000) thus making the conclusions drawn there of wider validity and not related strictly to the reference set selected. However, it is shown that two-factor interactions are present not only between different pairs of parameters of an individual model, but also between pairs of parameters of different models, such as rainfall and rainfall-runoff models, thus demonstrating the complex interaction between climate and basin characteristics affecting the ffc and in particular its curvature. Furthermore, the wider range of climatic regime behaviour produced within the factorial experimental design shows that the probability distribution of soil moisture content at the storm arrival time is no longer sufficient to explain the link between the perturbations to the parameters and their effects on the ffc, as was suggested in Hashemi et al. (2000). Other factors have to be considered, such as the probability distribution of the soil moisture capacity, and the rainfall regime, expressed through the annual maximum rainfalls over different durations. Keywords: Monte Carlo simulation; factorial experimental design; analysis of variance (ANOVA)


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1896 ◽  
Author(s):  
Gabriel-Martin ◽  
Sordo-Ward ◽  
Garrote ◽  
García

This paper focuses on proposing the minimum number of storms necessary to derive the extreme flood hydrographs accurately through event-based modelling. To do so, we analyzed the results obtained by coupling a continuous stochastic weather generator (the Advanced WEather GENerator) with a continuous distributed physically-based hydrological model (the TIN-based real-time integrated basin simulator), and by simulating 5000 years of hourly flow at the basin outlet. We modelled the outflows in a basin named Peacheater Creek located in Oklahoma, USA. Afterwards, we separated the independent rainfall events within the 5000 years of hourly weather forcing, and obtained the flood event associated to each storm from the continuous hourly flow. We ranked all the rainfall events within each year according to three criteria: Total depth, maximum intensity, and total duration. Finally, we compared the flood events obtained from the continuous simulation to those considering the N highest storm events per year according to the three criteria and by focusing on four different aspects: Magnitude and recurrence of the maximum annual peak-flow and volume, seasonality of floods, dependence among maximum peak-flows and volumes, and bivariate return periods. The main results are: (a) Considering the five largest total depth storms per year generates the maximum annual peak-flow and volume, with a probability of 94% and 99%, respectively and, for return periods higher than 50 years, the probability increases to 99% in both cases; (b) considering the five largest total depth storms per year the seasonality of flood is reproduced with an error of less than 4% and (c) bivariate properties between the peak-flow and volume are preserved, with an error on the estimation of the copula fitted of less than 2%.


2000 ◽  
Vol 4 (3) ◽  
pp. 463-482 ◽  
Author(s):  
A. M. Hashemi ◽  
M. Franchini ◽  
P. E. O’Connell

Abstract. Regionalized and at-site flood frequency curves exhibit considerable variability in their shapes, but the factors controlling the variability (other than sampling effects) are not well understood. An application of the Monte Carlo simulation-based derived distribution approach is presented in this two-part paper to explore the influence of climate, described by simulated rainfall and evapotranspiration time series, and basin factors on the flood frequency curve (ffc). The sensitivity analysis conducted in the paper should not be interpreted as reflecting possible climate changes, but the results can provide an indication of the changes to which the flood frequency curve might be sensitive. A single site Neyman Scott point process model of rainfall, with convective and stratiform cells (Cowpertwait, 1994; 1995), has been employed to generate synthetic rainfall inputs to a rainfall runoff model. The time series of the potential evapotranspiration (ETp) demand has been represented through an AR(n) model with seasonal component, while a simplified version of the ARNO rainfall-runoff model (Todini, 1996) has been employed to simulate the continuous discharge time series. All these models have been parameterised in a realistic manner using observed data and results from previous applications, to obtain ‘reference’ parameter sets for a synthetic case study. Subsequently, perturbations to the model parameters have been made one-at-a-time and the sensitivities of the generated annual maximum rainfall and flood frequency curves (unstandardised, and standardised by the mean) have been assessed. Overall, the sensitivity analysis described in this paper suggests that the soil moisture regime, and, in particular, the probability distribution of soil moisture content at the storm arrival time, can be considered as a unifying link between the perturbations to the several parameters and their effects on the standardised and unstandardised ffcs, thus revealing the physical mechanism through which their influence is exercised. However, perturbations to the parameters of the linear routing component affect only the unstandardised ffc. In Franchini et al. (2000), the sensitivity analysis of the model parameters has been assessed through an analysis of variance (ANOVA) of the results obtained from a formal experimental design, where all the parameters are allowed to vary simultaneously, thus providing deeper insight into the interactions between the different factors. This approach allows a wider range of climatic and basin conditions to be analysed and reinforces the results presented in this paper, which provide valuable new insight into the climatic and basin factors controlling the ffc. Keywords: stochastic rainfall model; rainfall runoff model; simulation; derived distribution; flood frequency; sensitivity analysis


Water ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 335 ◽  
Author(s):  
Alvaro Sordo-Ward ◽  
Paola Bianucci ◽  
Luis Garrote ◽  
Alfredo Granados

Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 70 ◽  
Author(s):  
Guevara Ochoa ◽  
Masson ◽  
Cazenave ◽  
Vives ◽  
Amábile

: Due to the socioeconomical impact of water extremes in plain areas, there is a considerable demand for suitable strategies aiding in the management of water resources and rainfed crops. Numerical models allow for the modelling of water extremes and their consequences in order to decide on management strategies. Moreover, the integration of hydrologic models with hydraulic models under continuous or event-based approaches would synergistically contribute to better forecasting of water extreme consequences under different scenarios. This study conducted at the Santa Catalina stream basin (Buenos Aires province, Argentina) focuses on the integration of numerical models to analyze the hydrological response of plain areas to water extremes under different scenarios involving the implementation of an eco-efficient infrastructure (i.e., the integration of a green infrastructure and hydraulic structures). The two models used for the integration were: the Soil and Water Assessment Tool (SWAT) and the CELDAS8 (CTSS8) hydrologic-hydraulic model. The former accounts for the processes related to the water balance (e.g., evapotranspiration, soil moisture, percolation, groundwater discharge and surface runoff), allowing for the analysis of water extremes for either dry or wet conditions. Complementarily, CTSS8 models the response of a basin to a rainfall event (e.g., runoff volume, peak flow and time to peak flow, flooded surface area). A 10-year data record (2003–2012) was analyzed to test different green infrastructure scenarios. SWAT was able to reproduce the waterflow in the basin with Nash Sutcliffe (NS) efficiency coefficients of 0.66 and 0.74 for the calibration and validation periods, respectively. The application of CTSS8 for a flood event with a return period of 10 years showed that the combination of a green infrastructure and hydraulic structures decreased the surface runoff by 28%, increased the soil moisture by 10% on an average daily scale, and reduced the impact of floods by 21% during rainfall events. The integration of continuous and event-based models for studying the impact of water extremes under different hypothetical scenarios represents a novel approach for evaluating potential basin management strategies aimed at improving the agricultural production in plain areas.


2008 ◽  
Vol 39 (5-6) ◽  
pp. 385-401
Author(s):  
J. V. Sutcliffe ◽  
F. A. K. Farquharson ◽  
E. L. Tate ◽  
S. S. Folwell

Relations between mean annual flood estimates and basin area and precipitation, as well as dimensionless flood frequency curves, have been derived from a number of groups of gauging stations in the southern Caucasus. Total precipitation and its seasonal distribution are extremely variable at this location. The importance of antecedent soil moisture deficit (closely linked to the seasonal distribution of precipitation) in determining the shape of flood frequency curves is discussed through previous empirical studies and recent sensitivity analyses. The varying shape of regional curves from the southern Caucasus is related to the variations in soil moisture deficit.


Author(s):  
James E. Ball

Flood Management remains a major problem in many urban environments. Commonly, catchment models are used to generate the data needed for estimation of flood risk; event-based and continuous-based models have been used for this purpose. Use of catchment models requires calibration and validation with a calibration metric used to assess the predicted catchment response against the recorded catchment response. In this study, a continuous model based on SWMM using the Powells Creek catchment as a case study is investigated. Calibration of the model was obtained using 25 selected events from the monitored data for the catchment. Assessment of the calibration used a normalised peak flow error. Using alternative sets of parameter values to obtain estimates of the peak flow for each of the selected events and different accuracy criteria, the best datasets for each of the accuracy criteria were identified. These datasets were used with SWMM in a continuous simulation mode to predict flow sequences for extraction of Annual Maxima Series for an At-Site Flood Frequency Analysis. From analysis of these At-Site Flood Frequency Analyses, it was concluded that the normalised peak flow error needed to be less than 10% if reliable design flood quantile estimates were to be obtained.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 317
Author(s):  
Fadhliani Umar ◽  
Zed Zulkafli ◽  
Badronnisa Yusuf ◽  
Siti Nurhidayu

Rainfall runoff modeling has been a subject of interest for decades due to a need to understand a catchment system for management, for example regarding extreme event occurrences such as flooding. Tropical catchments are particularly prone to the hazards of extreme precipitation and the internal drivers of change in the system, such as deforestation and land use change. A model framework of dynamic TOPMODEL, DECIPHeR v1—considering the flexibility, modularity, and portability—and Generalized Likelihood Uncertainty Estimation (GLUE) method are both used in this study. They reveal model performance for the streamflow simulation in a tropical catchment, i.e., the Kelantan River in Malaysia, that is prone to flooding and experiences high rates of land use change. Thirty-two years’ continuous simulation at a daily time scale simulation along with uncertainty analysis resulted in a Nash Sutcliffe Efficiency (NSE) score of 0.42 from the highest ranked parameter set, while 25.35% of the measurement falls within the uncertainty boundary based on a behavioral threshold NSE 0.3. The performance and behavior of the model in the continuous simulation suggests a limited ability of the model to represent the system, particularly along the low flow regime. In contrast, the simulation of eight peak flow events achieves moderate to good fit, with the four peak flow events simulation returning an NSE > 0.5. Nonetheless, the parameter scatter plot from both the continuous simulation and analyses of peak flow events indicate unidentifiability of all model parameters. This may be attributable to the catchment modeling scale. The results demand further investigation regarding the heterogeneity of parameters and calibration at multiple scales.


Sign in / Sign up

Export Citation Format

Share Document