In vitro susceptibility of Candida albicans isolates from apical and marginal periodontitis to common antifungal agents

2000 ◽  
Vol 15 (4) ◽  
pp. 245-248 ◽  
Author(s):  
T. M. T. Waltimo ◽  
D. Ørstavik ◽  
J. H. Meurman ◽  
L. P. Samaranayake ◽  
M. P. P. Haapasalo
Author(s):  
Zora Jelesic ◽  
Deana Medic ◽  
Mira Mihajlovic-Ukropina ◽  
Marija Jevtic ◽  
Vera Gusman ◽  
...  

Candidemia is an important emerging nosocomial infection in patients with risk factors. Candida species from nonsterile sites can give insight into the characteristics of strains that may cause invasive disease. The aim of this study was to evaluate antifungal susceptibility of Candida blood and fecal isolates in Novi Sad, Vojvodina. During a 3-year period (2008 to 2010), 424 isolates of Candida spp. were collected, 30 bloodstream isolates and 394 strains from fecal samples. In vitro susceptibility of these isolates to five antifungal agents was established using commercial ATB FUNGUS 3 (Bio-M?rieux). Predominant species was Candida albicans (6 isolates from blood and 269 from feces). Resistance to one or more antifungal agents was less common in Candida albicans (3.63%) than in other species (24.83%). Resistance to itraconazole was the most commonly found in both groups of isolates, 9.64% strains from feces and 20% from blood samples. Twelve isolates were multiply resistant, usually to fluconazole, itraconazole, and voriconazole. Resistance to amphotericine B was extremely rare. Although resistance to antimycotics of Candida spp. is rare at present, continued surveillance of antifungal susceptibility is necessary in order to monitor trends, and to choose the right empiric therapy.


2017 ◽  
Vol 27 (4) ◽  
pp. 469-475 ◽  
Author(s):  
A. Zida ◽  
A. Yacouba ◽  
S. Bamba ◽  
I. Sangare ◽  
M. Sawadogo ◽  
...  

1994 ◽  
Vol 39 (10) ◽  
pp. 921-923 ◽  
Author(s):  
H. Nikawa ◽  
L.P. Samaranayake ◽  
J. Tenovuo ◽  
T. Hamada

Mycoses ◽  
2019 ◽  
Vol 62 (4) ◽  
pp. 384-390 ◽  
Author(s):  
Hailin Zheng ◽  
Yun He ◽  
Siyue Kan ◽  
Dongmei Li ◽  
Guixia Lv ◽  
...  

1999 ◽  
Vol 12 (1) ◽  
pp. 40-79 ◽  
Author(s):  
Daniel J. Sheehan ◽  
Christopher A. Hitchcock ◽  
Carol M. Sibley

SUMMARY Major developments in research into the azole class of antifungal agents during the 1990s have provided expanded options for the treatment of many opportunistic and endemic fungal infections. Fluconazole and itraconazole have proved to be safer than both amphotericin B and ketoconazole. Despite these advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. This review describes present and future uses of the currently available azole antifungal agents in the treatment of systemic and superficial fungal infections and provides a brief overview of the current status of in vitro susceptibility testing and the growing problem of clinical resistance to the azoles. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. Detailed information on some of the second-generation triazoles being developed to provide extended coverage of opportunistic, endemic, and emerging fungal pathogens, as well as those in which resistance to older agents is becoming problematic, is provided.


1998 ◽  
Vol 42 (10) ◽  
pp. 2503-2510 ◽  
Author(s):  
Maurizio Del Poeta ◽  
Wiley A. Schell ◽  
Christine C. Dykstra ◽  
Susan K. Jones ◽  
Richard R. Tidwell ◽  
...  

ABSTRACT Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities againstCandida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active againstAspergillus fumigatus, Fusarium solani,Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Navaporn Worasilchai ◽  
Ariya Chindamporn ◽  
Rongpong Plongla ◽  
Pattama Torvorapanit ◽  
Kasama Manothummetha ◽  
...  

ABSTRACT Human pythiosis is a life-threatening human disease caused by Pythium insidiosum. In Thailand, vascular pythiosis is the most common form and carries a mortality rate of 10 to 40%, despite aggressive treatment with radical surgery, antifungal agents, and immunotherapy. Itraconazole and terbinafine have been the mainstay of treatment, until recently, based on case report data showing potential synergistic effects against Brazilian P. insidiosum isolates. However, the synergistic effects of itraconazole and terbinafine against Thai P. insidiosum isolates were not observed. This study tested the in vitro susceptibilities of 27 Thai human P. insidiosum isolates (clade II, n = 17; clade IV, n = 10), 12 Thai environmental P. insidiosum isolates (clade II, n = 4; clade IV, n = 8), and 11 non-Thai animal P. insidiosum isolates (clade I, n = 9; clade II, n = 2) to antibiotics in eight antibacterial classes to evaluate alternative effective treatments. Tetracycline and macrolide antibiotics demonstrated in vitro activity against Thai P. insidiosum isolates, with doxycycline MICs (1 to 16 μg/ml), minocycline MICs (1 to 4 μg/ml), tigecycline MICs (1 to 4 μg/ml), azithromycin MICs (1 to 16 μg/ml), and clarithromycin MICs (0.125 to 8 μg/ml) being the lowest, on average. Synergistic effects of tetracyclines and macrolides were also observed.


1996 ◽  
Vol 40 (11) ◽  
pp. 2622-2625 ◽  
Author(s):  
P G Sohnle ◽  
B L Hahn ◽  
M D Erdmann

The treatment of chronic mycoses may expose the infecting organisms to antimicrobial agents for extended periods of time. It is possible that an azole antifungal drug such as fluconazole, with primarily fungistatic activity in standard in vitro susceptibility tests, might be able to damage the fungal cells and reduce their viability over prolonged incubations under nonproliferating conditions. To test this possibility, Candida albicans yeast cells were exposed to various concentrations of fluconazole in RPMI 1640 tissue culture medium for 4 h at 37 degrees C, washed free of the drug, and then incubated at 37 degrees C for a 28-day period; enumeration of the remaining CFU at various times during this period revealed no increased loss of viability for the fluconazole-exposed organisms. However, when fluconazole was added to the organisms maintained in distilled water (with or without pretreatment with the drug), a marked reduction of viability was found. At 14 days of incubation with two strains of C. albicans, negative cultures were found for 7 of 10 and 10 of 11 samples, respectively, containing 1.0 microgram of fluconazole per ml versus 0 of 10 and 1 of 11 control samples (P of < 0.01 and 0.001, respectively). The effect of fluconazole on fungal viability under these conditions became noticeable at approximately 7 days and was greater when the samples were incubated at 37 degrees C rather than 25 degrees C. These findings suggest that fluconazole may have fungicidal effects on fungal cells during prolonged exposures under conditions in which the organisms are prevented from proliferating by lack of nutrients.


1992 ◽  
Vol 36 (4) ◽  
pp. 898-901 ◽  
Author(s):  
M T Blanco ◽  
C Perez-Giraldo ◽  
J Blanco ◽  
F J Moran ◽  
C Hurtado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document