Cell surface expression of CD25, CD54, and CD95 on B- and T-cells in chronic lymphocytic leukaemia in relation to trisomy 12, atypical morphology and clinical course

2002 ◽  
Vol 68 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Viktoria Hjalmar ◽  
Robert Hast ◽  
Eva Kimby
1999 ◽  
Vol 195 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Adele Louise McCormick ◽  
Leopoldo Santos-Argumedo ◽  
Mark Stephen Thomas ◽  
Andrew William Heath

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2762-2762
Author(s):  
Daniel P. Hart ◽  
Sharyn Thomas ◽  
Shao-an Xue ◽  
Emma C. Morris ◽  
Hans J. Stauss

Abstract Hodgkin lymphoma (HL) is the second most commonly diagnosed cancer in the 15–29 year old population. EBV-positive Hodgkin lymphoma typically demonstrates latency II antigen expression, characterised by loss of most EBV antigens except for the latent membrane protein (LMP) 1 and 2 and the EBNA-1 protein. LMP2 is expressed in Reed Sternberg cells and may serve as a target for antigen-specific immunotherapy. However, LMP2 is poorly immunogenic and it is often difficult to generate autologous LMP2-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy. T cell receptor (TCR) gene transfer using retroviral vectors containing the TCR alpha and beta chain genes can reproducibly redirect the antigen specificity of a given population of T cells. Such an approach has been used here to generate LMP2-specific CTL independent of the immuno-competence of the patient. The goal of this study was to generate a retroviral TCR construct suitable for rapid and efficient production of LMP2-specific CTL. Retrovirally introduced TCRs compete with endogenous TCRs for a limited pool of CD3 molecules required for assembly of the TCR complex. Competition for CD3 molecules may limit surface expression of the introduced TCR resulting in a transduced T cell with poor functional avidity. In an attempt to generate a ‘highly competitive’ LMP2-TCR the following modifications were made to the retroviral vector construct: nucleotide sequences were codon optimised for efficient translation in human cells; the TCR chain constant regions were altered to contain murine sequences to enhance CD3 binding; and the TCR alpha and beta chain genes were linked by a self-cleaving 2A sequence from the porcine teschovirus to enhance equimolar expression of both TCR chains. The unmodified HLA-A2-restricted LMP2-specific TCR was poorly expressed in primary human T cells, suggesting that it competed inefficiently with endogenous TCR chains for cell surface expression. Very few CD8+Vβ13+ T cells were detectable after LMP2-TCR transduction (up to 2.5% of viable CD3+ T cells, as detected by FACs analysis using monoclonal anti-Vβ13 antibodies), which included 1.9% CD8+ T cells expressing endogenous Vβ13+ TCRs as quantified in mock-transduced control cells. Poor expression of the wild type LMP2-TCR was consistently observed in independent transduction experiments. However, transduction with the modified LMP2-TCR construct resulted in cell surface expression of the TCR in 55–65% viable CD3+ T cells. HLA-A2/LMP2 pentamer binding was demonstrated in 36–39% CD8+ CTL cells immediately post transduction. The transduced cells showed peptide-specific IFNγ and IL2 production and killed target cells displaying the LMP2 peptide. Of major importance, expression of the introduced LMP2-TCR completely suppressed the cell surface expression of almost the entire repertoire of endogenous TCR combinations, including ‘mis-paired’ TCRs in the transduced primary human T cells. ‘Mis-paired’ TCRs contain an introduced alpha chain paired with an endogenous beta chain and vice versa. The antigen specificity of such mispaired TCRs generated after transduction is unknown and could lead to unwanted side effects. The design of vectors containing modified TCR sequences, which produce ‘dominant’ TCRs may improve the efficacy of TCR gene therapy and reduce the risk of potential auto-reactivity of endogenous and ‘mis-paired’ TCR combinations. We have shown that LMP2-specific T cells can be readily generated by TCR gene transfer with minimal risk of autoreactivity.


1997 ◽  
Vol 27 (12) ◽  
pp. 3269-3282 ◽  
Author(s):  
Arkadiusz Miazek ◽  
Manfred Brockhaus ◽  
Hanno Langen ◽  
Andrea Braun ◽  
Pawel Kisielow

2004 ◽  
Vol 34 (3) ◽  
pp. 827-836 ◽  
Author(s):  
Beáta Tóth ◽  
Katalin Ludányi ◽  
Ildikó Kiss ◽  
Uwe Reichert ◽  
Serge Michel ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2789-2789
Author(s):  
Lindsey F Call ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) has achieved impressive outcomes in the treatment of refractory/relapsed B-ALL, providing potentially curative treatment options for these patients. The use of CAR T in AML, however, is still in its infancy with limitations due to the innate heterogeneity associated with AML and the lack of AML-specific targets for therapeutic development. The CRLF2 gene encodes for thymic stromal lymphopoietin receptor (TSLPR) and has previously been shown to be highly upregulated in a subset of children and adults with B-ALL. Targeting TSLPR with CAR T cells demonstrates potent anti-leukemia activity against TSLPR-positive B-ALL (PMID 26041741). Through Target Pediatric AML (TpAML), we profiled the transcriptome of nearly 3000 children and young adults with AML and identified CRLF2 (TSLPR) to be highly expressed in a subset of AML, including the majority of AML harboring KM2TA (aka MLL) fusions. TSLPR cell surface expression was validated in primary patient samples using flow cytometry, which showed uniform expression of TSLPR on AML blasts. Given that TSLPR is expressed in AML with confirmed cell surface expression, we developed TSLPR-directed CAR T for preclinical evaluation in AML. We generated a TSLPR-directed CAR using the single-chain variable fragment (scFv) derived from an anti-TSLPR binder (clone 3G1, MD Anderson), IgG4 spacer and 41-BB/CD3zeta signaling domains. The in vitro cytotoxicity of TSLPR CAR T cells was evaluated against the REH-1 cell line and primary AML specimens. TSLPR CAR T cells demonstrated anti-leukemia activity against REH-1 as well as against primary AML specimens. To evaluate the in vivo efficacy of TSLPR CAR T cells, we developed a patient-derived xenograft (PDX) model using bone marrow cells from a TSLPR-positive patient. These cells provided a robust model system to evaluate the in vivo activity of TSLPR CAR T cells, as they produced an aggressive leukemia in humanized NSG-SGM3 mice. The PDX generated from these cells died within 2 months of transplant with significant leukemia infiltration into the bone marrow, liver, and spleen. In the in vivo study, the leukemia burden was assessed by flow cytometric analysis of AML cells in the peripheral blood and bone marrow aspirates following treatment with unmodified control or TSLPR CAR T cells given at 10x10 6 T cells per mouse. After CAR T treatment, we detected a significant decrease in leukemia infiltration into the peripheral blood and bone marrow in the CAR T-treated mice compared to mice that received unmodified T cells. In this study, we report that similar to B-ALL, CRLF2 (TSLPR) is overexpressed in a subset of AML, providing a strategy to eliminate AML cells with CAR T cell therapy. We validated the cell surface expression of TSLPR and showed that the expression is uniform across AML specimens. We further demonstrate that CAR T cells targeting TSLPR were effective in eliminating AML cells in vitro and in vivo. Given that TSLPR is highly expressed in the KMT2A-rearranged AML, a subtype that is associated with poor outcomes, TSLPR-directed CAR T cells represent a promising immunotherapy for this high-risk AML subset. Disclosures Pardo: Hematologics, Inc.: Current Employment.


2000 ◽  
Vol 165 (9) ◽  
pp. 5062-5068 ◽  
Author(s):  
Tomohiko Iida ◽  
Hiroshi Ohno ◽  
Chiaki Nakaseko ◽  
Machie Sakuma ◽  
Mitsue Takeda-Ezaki ◽  
...  

1994 ◽  
Vol 180 (1) ◽  
pp. 241-251 ◽  
Author(s):  
T Nakarai ◽  
M J Robertson ◽  
M Streuli ◽  
Z Wu ◽  
T L Ciardelli ◽  
...  

The interleukin 2 receptor (IL-2R) is known to be comprised of at least three genetically distinct subunits termed alpha, beta, and gamma. These chains can be expressed individually or in various combinations resulting in distinct receptors with different affinities for IL-2. In contrast to alpha and beta, the cell surface expression of the gamma chain protein previously has not been well-characterized. To examine cell surface expression of IL-2R gamma on hematopoietic cells, we developed two new monoclonal antibodies (mAbs) specific for this protein. Both 1A11 (immunoglobulin [IgG1]) and 3G11 (IgM) specifically reacted with murine cells transfected with IL-2R gamma cDNA, and immunoprecipitation studies indicated that both antibodies precipitated a protein of approximately 62-65 kD. Scatchard analysis of IL-2 binding to murine cells transfected with cDNA-encoding combinations of IL-2R components demonstrated that neither beta nor gamma chain bind IL-2 with measurable affinity, but coexpression of both beta and gamma is sufficient to form an intermediate affinity receptor. In the absence of gamma chain, beta chain interacts with alpha chain to form a "pseudo-high" affinity receptor. In contrast, gamma chain does not appear capable of interacting with alpha in the absence of beta chain. Thus, gamma chain appears to interact only with beta, but beta chain is capable of interacting with both alpha and gamma. Using the newly developed mAbs to examine cell surface expression by immunofluorescence, resting T cells were found to express low levels of gamma chain without detectable alpha or beta. Early after mitogen stimulation, T cells expressed higher levels of alpha, beta, and gamma. However, at later time points, T cells expressed alpha and gamma in marked excess over beta. Thus, formation of high affinity IL-2R on activated T cells was primarily limited by beta chain expression. In contrast, resting natural killer (NK) cells constitutively expressed IL-2R beta without detectable alpha or gamma. After activation with either IL-2 or IL-12, expression of both alpha and gamma transiently increased and then returned to very low levels. Expression of functional IL-2R on resting and activated NK cells, therefore, appeared to be primarily limited by the expression of gamma chain. IL-2 binding studies with resting NK cells confirmed the results of immunofluorescence studies indicating the presence of very low numbers of intermediate affinity (beta gamma) receptors for IL-2 on these cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document