Down-Regulation of HLA-G1 Cell Surface Expression in Human Cytomegalovirus Infected Cells

2003 ◽  
Vol 50 (4) ◽  
pp. 328-333 ◽  
Author(s):  
Nathalie Pizzato ◽  
Barbara Garmy-Susini ◽  
Philippe Le Bouteiller ◽  
Francoise Lenfant
2014 ◽  
Vol 95 (4) ◽  
pp. 933-939 ◽  
Author(s):  
Sepehr Seirafian ◽  
Virginie Prod’homme ◽  
Daniel Sugrue ◽  
James Davies ◽  
Ceri Fielding ◽  
...  

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on de novo virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.


2010 ◽  
Vol 84 (21) ◽  
pp. 11245-11254 ◽  
Author(s):  
Brian C. DeHaven ◽  
Natasha M. Girgis ◽  
Yuhong Xiao ◽  
Paul N. Hudson ◽  
Victoria A. Olson ◽  
...  

ABSTRACT The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.


Blood ◽  
2010 ◽  
Vol 115 (7) ◽  
pp. 1354-1363 ◽  
Author(s):  
Jonathan Richard ◽  
Sardar Sindhu ◽  
Tram N. Q. Pham ◽  
Jean-Philippe Belzile ◽  
Éric A. Cohen

AbstractHIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor, including ULBP-1, -2, and -3, but not MICA or MICB, in infected cells both in vitro and in vivo. However, the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G2 cell-cycle arrest, conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4+ T lymphocytes by a process that is Vpr dependent. Importantly, Vpr enhanced the susceptibility of HIV-1–infected cells to NK cell–mediated killing. Strikingly, Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell–mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells, suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall, these results indicate that Vpr is a key determinant responsible for HIV-1–induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1–induced CD4+ T-lymphocyte depletion but may also take part in HIV-1–induced NK-cell dysfunction.


2000 ◽  
Vol 66 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Hisashi Ogura ◽  
Isamu Matsunaga ◽  
Yasuna Takano ◽  
Xiaojun Ning ◽  
Minoru Ayata ◽  
...  

2009 ◽  
Vol 206 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Timothy J. Nice ◽  
Laurent Coscoy ◽  
David H. Raulet

NKG2D is a major stimulatory receptor expressed by natural killer (NK) cells and some T cells. The receptor recognizes major histocompatability complex class I–like cell surface ligands that are poorly expressed by normal tissues but are often induced in transformed and infected cells. The existence of several NKG2D ligands in each individual, some with strikingly divergent protein sequences, raises the possibility that different ligands are regulated by distinct disease-associated stresses. The transcripts for some ligands, including murine UL16-binding proteinlike transcript 1 (Mult1), are abundant in certain normal tissues where cell surface expression is absent, suggesting the existence of translational or posttranslational regulation. We report here that under normal conditions, Mult1 protein undergoes ubiquitination dependent on lysines in its cytoplasmic tail and lysosomal degradation. Mult1 degradation and ubiquitination is reduced in response to stress imparted by heat shock or ultraviolet irradiation, but not by other forms of genotoxicity, providing a novel mechanism for stress-mediated cellular control of NKG2D ligand expression.


2004 ◽  
Vol 85 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Patricia Devaux ◽  
Dale Christiansen ◽  
Sébastien Plumet ◽  
Denis Gerlier

Measles virus (MV)-infected cells are activators of the alternative human complement pathway, resulting in high deposition of C3b on the cell surface. Activation was observed independent of whether CD46 was used as a cellular receptor and did not correlate with CD46 down-regulation. The virus itself was an activator of the alternative pathway and was covered by C3b/C3bi, resulting in some loss in infectivity without loss of virus binding to target cells. The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F–C3b complexes were formed. The underlying activation mechanism was not related to any decrease in cell surface expression of the complement regulators CD46 and CD55. The C3b/C3bi coating of MV-infected cells and virus should ensure enhanced targeting of MV antigens to the immune system, through binding to complement receptors.


1992 ◽  
Vol 175 (1) ◽  
pp. 163-168 ◽  
Author(s):  
F Esquivel ◽  
J Yewdell ◽  
J Bennink

RMA/S is a mutant cell line with decreased cell surface expression of major histocompatibility complex class I molecules that has been reported to be deficient in presenting endogenously synthesized influenza virus nucleoprotein (NP) to cytotoxic T lymphocytes (CTL). In the present study we show that RMA/S cells can present vesicular stomatitis virus nucleocapsid protein, and, under some conditions, NP, to Kb-and Db-restricted CTL, respectively. Antigen presentation results from processing of cytosolic pools of endogenously synthesized proteins, and not the binding to cell surface class I molecules of antigenic peptides present in the virus inoculum or released from infected cells. Antigen processing of RMA/S differs, however, from processing by wild-type cells in requiring greater amounts of antigen, longer times to assemble or transport class I-peptide complexes, and in being more sensitive to blocking by anti-CD8 antibody. Thus, the antigen processing deficit in RMA/S cells is of a partial rather than absolute nature.


Sign in / Sign up

Export Citation Format

Share Document