Mild space weather forecast for 2020s predicts few solar storms

AccessScience ◽  
2019 ◽  
2021 ◽  
pp. 42-46
Author(s):  
ANASTASIA SERGEEVNA NADTOCHY ◽  
◽  
DMITRIY VLADIMIROVICH FOMIN ◽  

The paper presents information on the results of short-term space weather forecasting for the Vostochny cosmodrome based on data on the electron flux density with energies above 2 MeV received from satellites from the operator's site of the Space Weather Forecast Center of the Moscow State University Institute of Nuclear Physics. The analysis of the calculated data on the level of near-Earth radiation, as a result of the use of various extrapolation methods, showed that the method of exponential smoothing is most effective for short-term space weather forecasting. Such forecasts can be used when planning launches of launch vehicles from spaceports.


2006 ◽  
Vol 110 (1111) ◽  
pp. 623-626 ◽  
Author(s):  
L. R. Newcome

Abstract This paper applies existing information on solar storms to unmanned aviation; no new research data is presented. The purpose of this paper is to alert the unmanned aviation community to the potential hazards posed by solar storms, to familiarise it with the effects of solar storms and how to mitigate them, and to encourage research on solar storm effects on high altitude long endurance (HALE) aircraft and airship design and operations. As unmanned aircraft and airships move increasingly into high altitude (50,000+ft), endurance (24+ hr) roles, they will become vulnerable to the effects of space weather, specifically that of solar storms. Although solar storms are commonly associated with their impact on satellites, they affect the routing and timing of airline flights flying for six to eight hours at 30,000 to 40,000ft. Operating twice as high and with flight times twice as long (or longer) than those of airliners, HALE aircraft and airships occupy a middle zone of vulnerability, being more so than airliners but less so than satellites. A key difference however is that satellites are designed for space weather, whereas some current HALE vehicles are not. The paper concludes that unmanned HALE aircraft and airships can be one to three orders of magnitude more vulnerable to solar storms than a trans-Pacific airliner.


2001 ◽  
Vol 79 (6) ◽  
pp. 907-920 ◽  
Author(s):  
W Lyatsky ◽  
A M Hamza

A possible test for different models explaining the seasonal variation in geomagnetic activity is the diurnal variation. We computed diurnal variations both in the occurrence of large AE (auroral electrojet) indices and in the AO index. (AO is the auroral electrojet index that provides a measure of the equivalent zonal current.) Both methods show a similar diurnal variation in geomagnetic activity with a deep minimum around (3–7) UT (universal time) in winter and a shallower minimum near 5–9 UT in equinoctial months. The observed UT variation is consistent with the results of other scientists, but it is different from that expected from the Russell–McPherron mechanism proposed to explain the seasonal variation. It is suggested that the possible cause for the diurnal and seasonal variations may be variations in nightside ionospheric conductivity. Recent experimental results show an important role for ionospheric conductivity in particle acceleration and geomagnetic disturbance generation. They also show that low ionospheric conductivity is favorable to the generation of auroral and geomagnetic activity. The conductivity in conjugate nightside auroral zones (where substorm generation takes place) is minimum at equinoxes, when both auroral zones are in darkness. The low ionospheric conductivity at equinoxes may be a possible cause for the seasonal variation in the geomagnetic activity with maxima in equinoctial months. The diurnal variation in geomagnetic activity can be produced by the UT variation in the nightside ionospheric conductivity, which in winter and at equinoxes has a maximum around 4–5 UT that may lead to a minimum in geomagnetic activity at this time. We calculated the correlation patterns for the AE index versus solar-wind parameters inside and outside the (2–7) UT sector related to the minimum in geomagnetic activity. The correlation patterns appear different in these two sectors indeed, which is well consistent with the UT variation in geomagnetic activity. It also shows that it is possible to improve significantly the reliability of the Space Weather forecast by taking into account the dependence of geomagnetic activity not only on solar-wind parameters but also on UT and season. Our test shows that a simple account for the dependence of geomagnetic activity on UT can improve the reliability of the Space Weather forecast by at least 50% in the 2–7 UT sector in winter and equinoctial months. PACS No.: 91.25Le


2020 ◽  
Author(s):  
Mario M. Bisi ◽  
Mark Gibbs ◽  
Mike A. Hapgood ◽  
Mike Willis ◽  
Richard A. Harrison ◽  
...  

<p>For the UK, the potential impacts from severe space weather (and everyday space weather) are considered of a high importance and hence the UK Government has included “Severe Space Weather” on its National Risk Register of Civil Emergencies since 2011.  This is not just considering direct impacts on UK infrastructures, but also impacts to key partner/trading/neighbouring nations.  This has led to a long series of national and international engagements and strategic developments both between UK agencies/entities and with international agencies/organisations (such as ESA, NOAA, NASA, COSPAR, ISES, ICAO, WMO, and UN COPUOS).  On top of this, the UK has undertaken a series of wide-ranging investigations to mitigate space-weather impacts at the national level including the ongoing development of a national Space Weather Strategy – where the UK looks to experts across all sectors to feed into its development.</p><p> </p><p>An essential aspect of trying to mitigate space-weather impacts on the UK is the need for independent UK space-weather forecast capability in collaboration with the other 24/7 space-weather forecasting institutes around the World.  This UK capability allows for direct advice to government on all things space weather, particularly on what to do when an impending event is expected and throughout its duration and recovery.  Hence, he setting up of a UK staffed 24/7 space-weather forecasting centre at the Met Office alongside the formation of the Space Environment Impacts Expert Group (SEIEG) of experts were undertaken to provide the necessary advice to government.</p><p> </p><p>The UK is currently committing a large amount of money both to dedicated UK-based and ESA-based space weather programmes as well as through traditional science research funding channels.  This includes the UKRI Strategic Priorities Fund (SPF) Space Weather Instrumentation, Measurement, Modelling and Risk (SWIMMR) programme and the ESA Space Safety Programme.  The UK has also taken a lead on several other space-/ground-based space-weather endeavours that are proving highly complementary to current UK and global capabilities.</p><p> </p><p>In this presentation, we will provide an overview of the above along with any outline of the UK Space Weather Strategy open to the public at the time of the EGU 2020 Meeting.</p>


2019 ◽  
Vol 5 (4) ◽  
pp. 21-26
Author(s):  
Evgeniy Ivanov ◽  
Aleksey Gubin ◽  
Sergey Lesovoi ◽  
Ramses Zaldivar Estrada

We propose a project of the meter wavelength range solar spectropolarimeter designed for a ground-based network developing for space weather forecast. The Software-Defined Radio (SDR) solution is chosen to meet such instrument network requirements as specification identity, low cost, possibility of controlling and transmitting data remotely via the Internet. Along with these requirements, the proposed SDR solution allows us to measure Stokes I and V easily, which contrasts the proposed instrument with e-CALLISTO network spectropolarimeters, most of which can record only one linear polarization. Deployment of such instruments at various longitudes will allow continuous observation of type II bursts, often related to coronal mass ejections (CMEs) — the most geoeffective solar activity events that affect the space weather significantly.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
JoAnna Wendel

A task force on space weather recently released a national strategy to reduce damage resulting from solar storms. The plan is now open for public comment.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Mark Zastrow

The field of space weather forecasting could take cues from its Earthly counterpart to increase the reliability of models as well as warning times ahead of inbound solar storms.


Sign in / Sign up

Export Citation Format

Share Document