Nonchance Results from a Pure-Chance Test: A Study in Response-Position Selection

1971 ◽  
Author(s):  
Alfred D. Garvin
2012 ◽  
Author(s):  
Barbara Treccani ◽  
Roberta Sellaro ◽  
Remo Job ◽  
Roberto Cubelli

2011 ◽  
Vol 201-203 ◽  
pp. 1966-1971 ◽  
Author(s):  
Mohammad Rokonuzzaman ◽  
Shah Muhammad Ferdous ◽  
Enaiyat Ghani Ovy ◽  
Md. Ashraful Hoque

Line following automated robots is extensively used in industries for smooth running of production. This paper presents a simple and effective solution for path tracking problem for a wheeled automated mobile robot which can be used for material handling in industries. A PID controller has been used for controlling the robot which is capable of moving safely by smooth track-keeping in partially structured environment without any collision with static or moving objects. The purpose of the project is to build a mobile robot which will provide fast, smooth, accurate and safe movement in any given line or track. A straight or wavy line would be simple to follow whereas aT-junction, 90 degree bends, acute angle bends and grid junctions would be difficult to navigate through. This is due to the physical kinematics constraints which are limited to motor response, position and turning radius of the robot. A line sensor configuration has been proposed to improve the navigation reliability of the mobile robot which uses differential drive system. A dynamic algorithm has been developed for detecting and following a specified line which ensures the reliable and safe movement of the robot.


Paleobiology ◽  
1991 ◽  
Vol 17 (3) ◽  
pp. 202-213 ◽  
Author(s):  
Michael L. Rosenzweig ◽  
Robert D. McCord

Evolutionary progress is a trend that relaxes trade-off rules. It begins with the evolution of a key adaptation. It continues with the spread of the key adaptation as the clade that contains it replaces some older clade that lacks it. Key adaptations are those that allow for improvement in at least one organismal function at a reduced fitness cost in other functions.Replacement almost certainly involves more than pure chance. It may not often involve competitive extinction. Instead, species from the new clade produce new species to replace already extinct species from the old clade. The key adaptation gives them a higher competitive speciation rate than old-clade sources of replacement. The process, termed incumbent replacement, proceeds at a rate limited by extinction rate. Thus, replacement often seems linked to mass extinction events.The incumbent-replacement hypothesis explains what we know about the replacement of straight-neck turtles (Amphichelydia) by those that can flex their necks and protect their heads in their shells. This replacement occurred four or five times in different biotic provinces. It happened as long ago as the Cretaceous in Eurasia, and as recently as the Pleistocene in mainland Australia. It was accomplished in Gondwanaland by turtles flexing their necks sideways (Pleurodira), and in the north by those flexing their necks into an S-curve (Cryptodira). As is typical of replacements, amphichelydian replacement took millions of years to accomplish wherever it occurred, and much of it in North America took place in a burst associated with and immediately subsequent to a mass extinction.


2005 ◽  
Vol 58 (5) ◽  
pp. 839-864 ◽  
Author(s):  
Yang Seok Cho ◽  
Robert W. Proctor

Two types of stimulus–response compatibility (SRC) effect occur with orthogonal stimulus and response sets, an overall up–right/down–left advantage and mapping preferences that vary with response position. Researchers agree that the former type is due to asymmetric coding of the stimulus and response alternatives, but disagree as to whether the latter type requires a different explanation in terms of the properties of the motor system. This issue is examined in three experiments. The location of the stimulus set influenced orthogonal SRC when it varied along the same dimension as the responses (Experiments 1 and 2), with the pattern predicted by the hypothesis that the stimulus set provides a referent relative to which response position is coded. The effect of stimulus-set location on orthogonal SRC was independent of the stimulus onset asynchrony (SOA) for a marker that indicated stimulus-set side and the imperative stimulus. In contrast, a spatial correspondence effect for the irrelevant stimulus-set location and response was a decreasing function of SOA. Experiment 3 showed that the orthogonal SRC effect was determined by response position relative to the stimulus-set location and not the body midline. The results support the view that both types of orthogonal SRC effects are due to asymmetric coding of the stimuli and responses.


Author(s):  
David J. Bartholomew

In many quarters God and chance are still seen as mutually exclusive alternatives. It is common to hear that ascribing anything to “chance” rules out God’s action. Recent scientific developments have tended to reinforce that distinction. Quantum theory introduced an irreducible uncertainty at the atomic level by requiring that certain microscopic physical events were unpredictable in principle. This was followed by the biologists’ claim that mutations, on which evolution depends, were effectively random and hence that evolutionary development was undirected. The problem this posed to Christian apologists was put most forcibly by Jacques Monod when he asserted “Pure chance,… at the root of the stupendous edifice of evolution alone is the source of every innovation.” Several attempts have been made to include chance within a theistic account. One, advocated by the intelligent design movement, is to contend that some biological structures are too complex to have originated in the way that evolutionary theory supposes and therefore that they must be attributed to God. Another is to suppose that God acts in an undetectable way at the quantum level without destroying the random appearance of what goes on there. A third approach is to contend that chance is real and hence is a means by which God works. A key step in this argument is the recognition that chance and order are not mutually exclusive. Reality operates at a number of different levels of aggregation so that what is attributable to chance at one level emerges as near certainty at a higher level. Further arguments, based on what is known as the anthropic principle, are also used to judge whether or not chance is sufficient to account for existence. These are critically evaluated.


2001 ◽  
Vol 38 (A) ◽  
pp. 222-231 ◽  
Author(s):  
Yaolin Shi ◽  
Jie Liu ◽  
Guomin Zhang

The annual earthquake predictions of the China Seismological Bureau (CSB) are evaluated by means of an R score (an R score is approximately 0 for completely random guesses, and approximately 1 for completely successful predictions). The average R score of the annual predictions in China in the period 1990–1998 is about 0.184, significantly larger than 0.0. However, background seismicity is higher in seismically active regions. If a ‘random guess' prediction is chosen to be proportional to the background seismicity, the expected R score is 0.123, and the nine-year mean R score of 0.184 as observed is only marginally higher than this background value. Monte Carlo tests indicate that the probability of attaining an R score of actual prediction by background seismicity based on random guess is about . It is concluded that earthquake prediction in China is still in a very preliminary stage, barely above a pure chance level.


2008 ◽  
Vol 197 (2648) ◽  
pp. 28-31
Author(s):  
Mark Buchanan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document