I approach, therefore I am. I avoid, therefore I am not: Motor responses and self-inference

2011 ◽  
Author(s):  
Cynthia Gangi
Keyword(s):  
1969 ◽  
Vol 12 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Richard R. Martin ◽  
Gerald M. Siegel

Seventy-two college students were divided into three groups: Button Push-Speech (BP-S), Speech-Button Push (S-BP), and Control. BP-S subjects pushed one of two buttons on signal for 8 min. During the last 4 min, depression of the criterion button caused a buzzer to sound. After the button-push task, subjects spoke spontaneously for 30 min. During the last 20 min, the buzzer was presented contingent upon each disfluency. S-BP subjects were run under the same procedures, but the order of button-push and speech tasks was reversed. Control subjects followed the same procedures as S-BP subjects, but no buzzer signal was presented at any time. Both S-BP and BP-S subjects emitted significantly fewer disfluencies during the last 20 min (Conditioning) than during the first 10 min (Baserate) of the speaking task. The frequency of disfluencies for Control subjects did not change significantly from Baserate to Conditioning. In none of the three groups did the frequency of pushes on the criterion button change significantly from minute to minute throughout the 8-min button-push session.


2012 ◽  
Author(s):  
Samantha Burns ◽  
Sebastien Lagace ◽  
Katherine Guerard
Keyword(s):  

2017 ◽  
Author(s):  
Carl Michael Orquiola Galang

Excitability in the motor cortex is modulated when we observe other people receiving a painful stimulus (Avenanti et al., 2005). However, the task dependency of this modulation is not well understood, as different paradigms have yielded seemingly different results. Previous neurophysiological work employing transcranial magnetic stimulation (TMS) suggests that watching another person’s hand being pierced by a needle leads to a muscle specific inhibition, assessed via motor evoked potentials. Results from previous behavioural studies suggest that overt behavioural responses are facilitated due to pain observation (Morrison et al., 2007a; 2007b). There are several paradigmatic differences both between typical TMS studies and behavioural studies, and within behavioural studies themselves, that limit our overall understanding of how pain observation affects the motor system. In the current study, we combine elements of typical TMS experimental designs in a behavioural assessment of how pain observation affects overt behavioural responding. Specifically, we examined the muscle specificity, timing, and direction of modulation of motor responses due to pain observation. To assess muscle specificity, we employed pain and non-pain videos from previous TMS studies in a Go/No-Go task in which participants responded by either pressing a key with their index finger or with their foot. To assess timing, we examined response times for Go signals presented at 0ms or 500ms after the video. Results indicate that observation of another individual receiving a painful stimulus leads to a non-effector specific, temporally extended response facilitation (e.g., finger and foot facilitation present at 0ms and 500ms delays), compared to observation of non-pain videos. This behavioural facilitation effect differs from the typical motor inhibition seen in TMS studies, and we argue that the effects of pain observation on the motor system are state-dependent, with different states induced via task instructions. We discuss our results in light of previous work on motor responses to pain observation.


Purpose: This case discusses the neurological impact of Wallenberg syndrome on the visual-vestibular system and provides a clinical pathologic correlation between neuro-anatomic involvements with the manifesting symptoms. Case Report: A 50-year-old male presented for consultation following a left lateral medullary infarct occlusion of the left vertebral artery (Wallenberg syndrome) with complaints of intermittent binocular diplopia, vertigo, and oscillopsia. Assessment revealed an intermittent central nystagmus, a right skew deviation, and a left Horner’s syndrome. Video recordings of the nystagmus and ocular motor responses were documented. Conclusion: Wallenberg syndrome has very defined characteristics which can be used clinically to make a definitive diagnosis.It is important for eye care professionals to understand the neuro-anatomic involvements associated with this condition and make the clinical correlation to aid in the treatment and management of these patients.


1988 ◽  
Author(s):  
Roberta A. Klatzky ◽  
James W. Pelligrino
Keyword(s):  

2019 ◽  
Vol 20 (6) ◽  
pp. 614-629 ◽  
Author(s):  
Eglantina Idrizaj ◽  
Rachele Garella ◽  
Roberta Squecco ◽  
Maria Caterina Baccari

The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.


The control of movement is essential for animals traversing complex environments and operating across a range of speeds and gaits. We consider how animals process sensory information and initiate motor responses, primarily focusing on simple motor responses that involve local reflex pathways of feedback and control, rather than the more complex, longer-term responses that require the broader integration of higher centers within the nervous system. We explore how local circuits facilitate decentralized coordination of locomotor rhythm and examine the fundamentals of sensory receptors located in the muscles, tendons, joints, and at the animal’s body surface. These sensors monitor the animal’s physical environment and the action of its muscles. The sensory information is then carried back to the animal’s nervous system by afferent neurons, providing feedback that is integrated at the level of the spinal cord of vertebrates and sensory-motor ganglia of invertebrates.


Sign in / Sign up

Export Citation Format

Share Document