The role of the right inferior frontal gyrus following reversal of consistent stimulus-stop mappings

2013 ◽  
Author(s):  
Maisy Best ◽  
Tobias Stevens ◽  
Fraser Milton ◽  
Christopher D. Chambers ◽  
Ian P. McLaren ◽  
...  
2015 ◽  
Vol 123 (6) ◽  
pp. 1401-1404 ◽  
Author(s):  
Guillaume Herbet ◽  
Gilles Lafargue ◽  
Fabien Almairac ◽  
Sylvie Moritz-Gasser ◽  
François Bonnetblanc ◽  
...  

The authors report the first case of a strikingly unusual speech impairment evoked by intraoperative electrostimulation in a 36-year-old right-handed patient, a well-trained singer, who underwent awake surgery for a right fronto-temporo-insular low-grade glioma. Functionally disrupting the pars opercularis of the right inferior frontal gyrus led the patient to automatically switch from a speaking to a singing mode of language production. Given the central role of the right pars opercularis in the inhibitory control network, the authors propose that this finding may be interpreted as possible evidence for a competitive and independent neurocognitive subnetwork devoted to the melodically intoned articulation of words (normal language-based vs singing-based) in subjects with high expertise. From a more clinical perspective, such data may have implications for awake neurosurgery, especially to preserve the quality of life for singers.


2014 ◽  
Vol 261 (3) ◽  
pp. 600-603 ◽  
Author(s):  
Michael J. Devine ◽  
Paul Bentley ◽  
Brynmor Jones ◽  
Gary Hotton ◽  
Richard J. Greenwood ◽  
...  

2012 ◽  
Vol 108 (2) ◽  
pp. 380-389 ◽  
Author(s):  
Weidong Cai ◽  
Jobi S. George ◽  
Frederick Verbruggen ◽  
Christopher D. Chambers ◽  
Adam R. Aron

Rapidly stopping action engages a network in the brain including the right presupplementary motor area (preSMA), the right inferior frontal gyrus, and the basal ganglia. Yet the functional role of these different regions within the overall network still remains unclear. Here we focused on the role of the right preSMA in behavioral stopping. We hypothesized that the underlying neurocognitive function of this region is one or more of setting up a stopping rule in advance, modulating response tendencies (e.g., slowing down in anticipation of stopping), and implementing stopping when the stop signal occurs. We performed two experiments with magnetic resonance imaging (MRI)–guided, event-related, transcranial magnetic stimulation(TMS), during the performance of variants of the stop signal task. In experiment 1 we show that stimulation of the right preSMA versus vertex (control site) slowed the implementation of stopping (measured via stop signal reaction time) but had no influence on modulation of response tendencies. In experiment 2, we showed that stimulation of the right preSMA slowed implementation of stopping in a mechanistically selective form of stopping but had no influence on setting up stopping rules. The results go beyond the replication of prior findings by showing that TMS of the right preSMA impairs stopping behavior (including a behaviorally selective form of stopping) through a specific disruption of the implementation of stopping. Future studies are required to establish whether this was due to stimulation of the right preSMA itself or because of remote effects on the wider stopping network.


2020 ◽  
Author(s):  
Yun Li ◽  
Wenjuan Li ◽  
Tingting Zhang ◽  
Junjun Zhang ◽  
Zhenlan Jin ◽  
...  

2013 ◽  
Vol 28 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Raffaella Chieffo ◽  
Federico Ferrari ◽  
Petronilla Battista ◽  
Elise Houdayer ◽  
Arturo Nuara ◽  
...  

Background. The role of the right hemisphere in poststroke aphasia recovery is still controversial and the effects of repetitive transcranial magnetic stimulation (rTMS) over the right homologous Broca’s region have been seldom investigated. Objective. This study aimed to compare the effect of excitatory, inhibitory, and sham rTMS delivered with H-coil over the right inferior frontal gyrus in chronic aphasic patients. Methods. Five right-handed poststroke aphasic patients underwent a picture naming task before and immediately after each of 3 sessions of rTMS: excitatory (10 Hz), inhibitory (1 Hz), and sham rTMS, in random sequence and separated by at least 1 week. Results. Only the excitatory 10-Hz stimulation was associated with a significant improvement in naming performance ( P = .043) and was significantly more effective than 1-Hz rTMS ( P = .043). Conclusions. A single session of excitatory deep brain rTMS over the right inferior frontal gyrus with H-coil significantly improves naming in right-handed chronic poststroke aphasic patients. This result is in line with the hypothesis of a positive, rather than detrimental, role of the right hemisphere in chronic aphasia due to a left-hemispheric stroke.


NeuroImage ◽  
2010 ◽  
Vol 50 (3) ◽  
pp. 1313-1319 ◽  
Author(s):  
Adam Hampshire ◽  
Samuel R. Chamberlain ◽  
Martin M. Monti ◽  
John Duncan ◽  
Adrian M. Owen

2019 ◽  
Author(s):  
Paul Hoffman ◽  
Andres Tamm

AbstractHomonyms are a critical test case for investigating how the brain resolves ambiguity in language and, more generally, how context influences semantic processing. Previous neuroimaging studies have associated processing of homonyms with greater engagement of regions involved in executive control of semantic processing. However, the precise role of these areas and the involvement of semantic representational regions in homonym comprehension remain elusive. We addressed this by combining univariate and multivariate fMRI analyses of homonym processing. We tested whether multi-voxel activation patterns could discriminate between presentations of the same homonym in different contexts (e.g., bark following tree vs. bark following dog). The ventral anterior temporal lobe, implicated in semantic representation but not previously in homonym comprehension, showed this meaning-specific coding, despite not showing increased mean activation for homonyms. Within inferior frontal gyrus (IFG), a key site for semantic control, there was a dissociation between pars orbitalis, which also showed meaning-specific coding, and pars triangularis, which discriminated more generally between semantically related and unrelated word pairs. IFG effects were goal-dependent, only occurring when the task required semantic decisions, in line with a top-down control function. Finally, posterior middle temporal cortex showed a hybrid pattern of responses, supporting the idea that it acts as an interface between semantic representations and the control system. The study provides new evidence for context-dependent coding in the semantic system and clarifies the role of control regions in processing ambiguity. It also highlights the importance of combining univariate and multivariate neuroimaging data to fully elucidate the role of a brain region in semantic cognition.


2019 ◽  
Author(s):  
Rafal M. Skiba ◽  
Patrik Vuilleumier

AbstractPerception of emotional expressions in faces relies on the integration of distinct facial features. We used fMRI to examine the role of local and global motion information in facial movements during exposure to novel dynamic face stimuli. We found that synchronous expressions distinctively engaged medial prefrontal areas in the ventral anterior cingulate cortex (vACC), supplementary premotor areas, and bilateral superior frontal gyrus (global temporal-spatial processing). Asynchronous expressions in which one part of the face (e.g., eyes) unfolded before the other (e.g., mouth) activated more the right superior temporal sulcus (STS) and inferior frontal gyrus (local temporal-spatial processing). DCM analysis further showed that processing of asynchronous expression features was associated with a differential information flow, centered on STS, which received direct input from occipital cortex and projected to the amygdala. Moreover, STS and amygdala displayed selective interactions with vACC where the integration of both local and global motion cues (present in synchronous expressions) could take place. These results provide new evidence for a role of both local and global temporal dynamics in emotional expressions, extracted in partly separate brain pathways. Importantly, we show that dynamic expressions with synchronous movement cues may distinctively engage brain areas responsible for motor execution of expressions.


Sign in / Sign up

Export Citation Format

Share Document