The Role of Item-Specific and Relational Processing in Recognition and Recall

1992 ◽  
Author(s):  
Francis S. Bellezza
2018 ◽  
Author(s):  
Natalia I. Córdova ◽  
Nicholas B. Turk-Browne ◽  
Mariam Aly

AbstractHippocampal episodic memory is fundamentally relational, consisting of links between events and the spatial and temporal contexts in which they occurred. Such relations are also important over much shorter time periods, during online visual perception. For example, how do we assess the relative spatial positions of objects, their temporal order, or the relationship between their features? Here, we investigate the role of the hippocampus in such online relational processing by manipulating visual attention to different kinds of relations in a dynamic display. While undergoing high-resolution fMRI, participants viewed two images in rapid succession on each trial and performed one of three relational tasks, judging the images’ relative: spatial positions, temporal onsets, or sizes. As a control, they sometimes also judged whether one image was tilted, irrespective of the other; this served as a baseline item task with no demands on relational processing. All hippocampal regions of interest (CA1, CA2/3/DG, subiculum) showed reliable deactivation when participants attended to relational vs. item information. Attention to temporal relations was associated with more robust deactivation than the other conditions. One possible interpretation of such deactivation is that it reflects hippocampal disengagement. If true, there should be reduced information content and noisier, less reliable patterns of activity in the hippocampus for the temporal vs. other tasks. Instead, analyses of multivariate activity patterns revealed more stable hippocampal representations in the temporal task. Additional analyses showed that this increased pattern similarity was not simply a reflection of the lower univariate activity. Thus, the hippocampus differentiates between relational and item processing even during online visual perception, and its representations of temporal relations in particular are robust and stable. Together, these findings suggest that the relational computations of the hippocampus, known to be important for memory, extend beyond this purpose, enabling the rapid online extraction of relational information in visual perception.


2019 ◽  
Author(s):  
Kristina Wiebels ◽  
Donna Rose Addis ◽  
David Moreau ◽  
Valerie van Mulukom ◽  
Kelsey Esmé Onderdijk ◽  
...  

Reports on differences between remembering the past and imagining the future have led to the hypothesis that constructing future events is a more cognitively demanding process. However, factors that influence these increased demands, such as whether the event has been previously constructed and the types of details comprising the event, have remained relatively unexplored. Across two experiments, we examined how these factors influence the process of constructing event representations by having participants repeatedly construct events and measuring how construction times and a range of phenomenological ratings changed across time points. In Experiment 1, we contrasted the construction of past and future events and found that, relative to past events, the constructive demands associated with future events are particularly heightened when these events are imagined for the first time. Across repeated simulations, future events became increasingly similar to past events in terms of construction times and incorporated detail. In Experiment 2, participants imagined future events involving two memory details (person, location) and then reimagined the event either i) exactly the same, ii) with a different person, or iii) in a different location. We predicted that if generating spatial information is particularly important for event construction, a change in location will have the greatest impact on constructive demands. Results showed that spatial context contributed to these heightened constructive demands more so than person details, consistent with theories highlighting the central role of spatial processing in episodic simulation. We discuss the findings from both studies in the light of relational processing demands and consider implications for current theoretical frameworks.


2020 ◽  
Vol 46 (8) ◽  
pp. 1424-1441 ◽  
Author(s):  
Kristina Wiebels ◽  
Donna Rose Addis ◽  
David Moreau ◽  
Valerie van Mulukom ◽  
Kelsey E. Onderdijk ◽  
...  

JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


Sign in / Sign up

Export Citation Format

Share Document