scholarly journals Supplemental Material for Chronic White Matter Changes Detected Using Diffusion Tensor Imaging Following Adult Traumatic Brain Injury and Their Relationship to Cognition

2020 ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 881-893
Author(s):  
Erica J. Wallace ◽  
Jane L. Mathias ◽  
Lynn Ward ◽  
Kerstin Pannek ◽  
Jurgen Fripp ◽  
...  

Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


2014 ◽  
Vol 31 (10) ◽  
pp. 938-950 ◽  
Author(s):  
Evan Calabrese ◽  
Fu Du ◽  
Robert H. Garman ◽  
G. Allan Johnson ◽  
Cory Riccio ◽  
...  

2022 ◽  
Vol 11 (2) ◽  
pp. 358
Author(s):  
Francesco Latini ◽  
Markus Fahlström ◽  
Fredrik Vedung ◽  
Staffan Stensson ◽  
Elna-Marie Larsson ◽  
...  

Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.


2018 ◽  
Vol 35 (20) ◽  
pp. 2365-2376 ◽  
Author(s):  
Ana María Castaño Leon ◽  
Marta Cicuendez ◽  
Blanca Navarro ◽  
Pablo M. Munarriz ◽  
Santiago Cepeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document