Attentional control and metacognitive monitoring of the effects of different types of task-irrelevant sound on serial recall.

Author(s):  
Florian Kattner ◽  
Donna Bryce
2020 ◽  
Vol 33 (4-5) ◽  
pp. 521-548
Author(s):  
Laura Cacciamani ◽  
Larisa Sheparovich ◽  
Molly Gibbons ◽  
Brooke Crowley ◽  
Kalynn E. Carpenter ◽  
...  

Abstract We often rely on our sense of vision for understanding the spatial location of objects around us. If vision cannot be used, one must rely on other senses, such as hearing and touch, in order to build spatial representations. Previous work has found evidence of a leftward spatial bias in visual and tactile tasks. In this study, we sought evidence of this leftward bias in a non-visual haptic object location memory task and assessed the influence of a task-irrelevant sound. In Experiment 1, blindfolded right-handed sighted participants used their non-dominant hand to haptically locate an object on the table, then used their dominant hand to place the object back in its original location. During placement, participants either heard nothing (no-sound condition) or a task-irrelevant repeating tone to the left, right, or front of the room. The results showed that participants exhibited a leftward placement bias on no-sound trials. On sound trials, this leftward bias was corrected; placements were faster and more accurate (regardless of the direction of the sound). One explanation for the leftward bias could be that participants were overcompensating their reach with the right hand during placement. Experiment 2 tested this explanation by switching the hands used for exploration and placement, but found similar results as Experiment 1. A third Experiment found evidence supporting the explanation that sound corrects the leftward bias by heightening attention. Together, these findings show that sound, even if task-irrelevant and semantically unrelated, can correct one’s tendency to place objects too far to the left.


2019 ◽  
Author(s):  
Swann Pichon ◽  
Garibotto Valentina ◽  
Wissmeyer Michael ◽  
Seimbille Yann ◽  
Lia Antico ◽  
...  

Nicotinic acetylcholine receptors (nAChRs) are widely distributed in the human brain and play an important role in the neuromodulation of brain networks implicated in attentional processes. Previous work in humans showed that heteromeric α4β2 nAChRs are abundant in the cingulo-insular network underlying attentional control. It has been proposed that cholinergic neuromodulation by α4β2 nAChRs is involved in attentional control during demanding tasks, when additional resources are needed to minimize interference from task-irrelevant stimuli and focus on task-relevant stimuli. Here we investigate the link between the availability of α4β2 nAChRs in the cingulo-insular network and behavioral measures of interference control using two versions of the Stroop paradigm, a task known to recruit cingulo-insular areas. We used a previously published PET dataset acquired 24 non-smoking male subjects in the context of a larger study which investigated the brain distribution of nAChRs in two clinical groups using 2-[(18)F]F-A-85380 PET. We found that higher availability of α4β2 nAChRs in the dorsal anterior cingulate cortex (ACC) predicted better interference control independently of group and age. In line with animal models, our results support the view that the availability of α4β2 nAChRs in the dorsal ACC is linked with more efficient attentional control.


Vision ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Hiu Mei Chow ◽  
Xenia Leviyah ◽  
Vivian M. Ciaramitaro

While previous research has investigated key factors contributing to multisensory integration in isolation, relatively little is known regarding how these factors interact, especially when considering the enhancement of visual contrast sensitivity by a task-irrelevant sound. Here we explored how auditory stimulus properties, namely salience and temporal phase coherence in relation to the visual target, jointly affect the extent to which a sound can enhance visual contrast sensitivity. Visual contrast sensitivity was measured by a psychophysical task, where human adult participants reported the location of a visual Gabor pattern presented at various contrast levels. We expected the most enhanced contrast sensitivity, the lowest contrast threshold, when the visual stimulus was accompanied by a task-irrelevant sound, weak in auditory salience, modulated in-phase with the visual stimulus (strong temporal phase coherence). Our expectations were confirmed, but only if we accounted for individual differences in optimal auditory salience level to induce maximal multisensory enhancement effects. Our findings highlight the importance of interactions between temporal phase coherence and stimulus effectiveness in determining the strength of multisensory enhancement of visual contrast as well as highlighting the importance of accounting for individual differences.


2010 ◽  
Vol 104 (5) ◽  
pp. 2573-2585 ◽  
Author(s):  
Dirk Kerzel ◽  
Sabine Born ◽  
David Souto

It is known that visual transients prolong saccadic latency and reduce saccadic frequency. The latter effect was attributed to subcortical structures because it occurred only 60–70 ms after stimulus onset. We examined the effects of large task-irrelevant transients on steady-state pursuit and the generation of catch-up saccades. Two screen-wide stripes of equal contrast (4, 20, or 100%) were briefly flashed at equal eccentricities (3, 6, or 12°) from the pursuit target. About 100 ms after flash onset, we observed that pursuit gain dropped by 6–12% and catch-up saccades were entirely suppressed. The relatively long latency of the inhibition suggests that it results from cortical mechanisms that may act by promoting fixation or the deployment of attention over the visual field. In addition, we show that a loud irrelevant sound is able to generate the same inhibition of saccades as visual transients, whereas it only induces a weak modulation of pursuit gain, indicating a privileged access of acoustic information to the saccadic system. Finally, irrelevant changes in motion direction orthogonal to pursuit had a smaller and later inhibitory effect.


2009 ◽  
Vol 21 (12) ◽  
pp. 2384-2397 ◽  
Author(s):  
Valerio Santangelo ◽  
Marta Olivetti Belardinelli ◽  
Charles Spence ◽  
Emiliano Macaluso

In everyday life, the allocation of spatial attention typically entails the interplay between voluntary (endogenous) and stimulus-driven (exogenous) attention. Furthermore, stimuli in different sensory modalities can jointly influence the direction of spatial attention, due to the existence of cross-sensory links in attentional control. Using fMRI, we examined the physiological basis of these interactions. We induced exogenous shifts of auditory spatial attention while participants engaged in an endogenous visuospatial cueing task. Participants discriminated visual targets in the left or right hemifield. A central visual cue preceded the visual targets, predicting the target location on 75% of the trials (endogenous visual attention). In the interval between the endogenous cue and the visual target, task-irrelevant nonpredictive auditory stimuli were briefly presented either in the left or right hemifield (exogenous auditory attention). Consistent with previous unisensory visual studies, activation of the ventral fronto-parietal attentional network was observed when the visual targets were presented at the uncued side (endogenous invalid trials, requiring visuospatial reorienting), as compared with validly cued targets. Critically, we found that the side of the task-irrelevant auditory stimulus modulated these activations, reducing spatial reorienting effects when the auditory stimulus was presented on the same side as the upcoming (invalid) visual target. These results demonstrate that multisensory mechanisms of attentional control can integrate endogenous and exogenous spatial information, jointly determining attentional orienting toward the most relevant spatial location.


2020 ◽  
Author(s):  
Takashi Obana ◽  
Stephen Wee Hun Lim ◽  
Christopher L. Asplund

Our attention is often captured by unexpected or unusual sounds. Such stimulus- driven control of attention can be adaptive, as potentially relevant events need to be quickly evaluated and acted upon. Attentional capture, however, comes with a cost: Ongoing tasks may be disrupted. In a series of seven experiments (n=773), we investigated the effects of task-irrelevant, rare, and relatively unexpected sounds (“surprise stimuli”) on probe detection in rapid auditory presentation (RAP) streams. Surprise stimuli caused “Surprise-induced Deafness” (SiD), a severe detection deficit that lasted for under one second within each trial and gradually habituated across several trials. SiD was sensitive to informational “surprise”, with larger deficits following stimuli that were infrequent or varied across trials. The effect also generalized: Natural sounds or constructed stimuli could disrupt detection of either spoken letters or simple tones. We also compared SiD to the auditory attentional blink (AAB), a similar paradigm in which goal-directed target processing disrupts probe detection. We found that the two deficits were weakly correlated. We conclude that SiD is a novel perceptual deficit that primarily reflects stimulus-driven attentional capture. It may involve other forms of attentional control as well, thereby reflecting multiple attentional influences on awareness.


Sign in / Sign up

Export Citation Format

Share Document