Polymorphism in intron 4 of HFE may cause overestimation of C282Y homozygote prevalence in haemochromatosis

10.1038/11892 ◽  
1999 ◽  
Vol 22 (4) ◽  
pp. 325-326 ◽  
Author(s):  
Gary P. Jeffrey ◽  
Subrata Chakrabarti ◽  
Robert A. Hegele ◽  
Paul C. Adams
Keyword(s):  
2001 ◽  
Vol 120 (5) ◽  
pp. A496-A496 ◽  
Author(s):  
P CLARKE ◽  
S GRIMES ◽  
D MCWILLIAMS ◽  
W KLEIE ◽  
K KHAN ◽  
...  

2021 ◽  
pp. 026835552110166
Author(s):  
Guangbin Huang ◽  
Xuejun Deng ◽  
Yanan Xu ◽  
Pan Wang ◽  
Tao Li ◽  
...  

Background Endothelial nitric oxide synthase (eNOS) polymorphism may influence the risk of venous thromboembolism (VTE). However, data from published studies with low statistical power are inconclusive. The present meta-analysis aimed to assess the relationship between eNOS polymorphism and the risk of VTE. Method Case-control studies evaluating the association between the eNOS polymorphism and VTE were searched in PubMed, Embase, Web of Science, Google Scholar, Wanfang, Chinese National Knowledge Infrastructure (CNKI), the Chongqing VIP Chinese Science and Technology Periodical Database (VIP), and Chinese Biomedical Literature Database (CBM). Results A total of 1588 cases and 2405 controls from 9 studies were included in the analysis. The results showed that eNOS G894T polymorphism was related to VTE susceptibility and the difference was statistically significant [T vs G: OR = 1.41, 95% CI (1.13, 1.75), P = 0.002; TT + GG vs TG: OR = 0.71, 95% CI (0.60, 0.84), P = 0.000; TT + TG vs GG: OR = 1.45, 95% CI (1.23, 1.70), P = 0.000]. Additionally, eNOS Intron 4 VNTR polymorphism was related to VTE susceptibility and the difference was statistically significant [4b4b vs 4a4a + 4a4b: OR = 2.77, 95% CI (1.01, 7.61), P = 0.048]. Conclusion ENOS G894T and eNOS Intron 4 VNTR polymorphisms were associated with VTE susceptibility, especially in Asian populations. However, multicenter studies with larger samples should be conducted to further clarify this association and verify our findings.


2003 ◽  
Vol 61 (6) ◽  
pp. 475-483 ◽  
Author(s):  
W.T.N. Swelsen ◽  
C.E.M. Voorter ◽  
E.M. van den Berg-Loonen
Keyword(s):  

2006 ◽  
Vol 26 (11) ◽  
pp. 4111-4121 ◽  
Author(s):  
Mohamad Zubair ◽  
Satoru Ishihara ◽  
Sanae Oka ◽  
Katsuzumi Okumura ◽  
Ken-ichirou Morohashi

ABSTRACT The orphan nuclear receptor Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1) is essential for the proper development and function of reproductive and steroidogenic tissues. Although the expression of Ad4BP/SF-1 is specific for those tissues, the mechanisms underlying this tissue-specific expression remain unknown. In this study, we used transgenic mouse assays to examine the regulation of the tissue-specific expression of Ad4BP/SF-1. An investigation of the entire Ad4BP/SF-1 gene locus revealed a fetal adrenal enhancer (FAdE) in intron 4 containing highly conserved binding sites for Pbx-Prep, Pbx-Hox, and Ad4BP/SF-1. Transgenic assays revealed that the Ad4 sites, together with Ad4BP/SF-1, develop an autoregulatory loop and thereby maintain transcription, while the Pbx/Prep and Pbx/Hox sites initiate transcription prior to the establishment of the autoregulatory loop. Indeed, a limited number of Hox family members were found to be expressed in the adrenal primordia. Whether a true fetal-type adrenal cortex is present in mice remained controversial, and this argument was complicated by the postnatal development of the so-called X zone. Using transgenic mice with lacZ driven by the FAdE, we clearly identified a fetal adrenal cortex in mice, and the X zone is the fetal adrenal cells accumulated at the juxtamedullary region after birth.


Author(s):  
Wei-Chih Lin ◽  
Ya-Huei Chen ◽  
Shin-Yuan Gu ◽  
Hwei-Ling Shen ◽  
Kai-Chau Huang ◽  
...  

Abstract Plant CRM domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis, and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph H. Lee ◽  
Susan Gurney ◽  
Deborah Pang ◽  
Alexis Temkin ◽  
Naeun Park ◽  
...  

Background/Aims. Genetic variants that affect estrogen activity may influence the risk of Alzheimer's disease (AD). In women with Down syndrome, we examined the relation of polymorphisms in hydroxysteroid-17beta-dehydrogenase (HSD17B1) to age at onset and risk of AD.HSD17B1encodes the enzyme 17β-hydroxysteroid dehydrogenase (HSD1), which catalyzes the conversion of estrone to estradiol.Methods. Two hundred and thirty-eight women with DS, nondemented at baseline, 31–78 years of age, were followed at 14–18-month intervals for 4.5 years. Women were genotyped for 5 haplotype-tagging single-nucleotide polymorphisms (SNPs) in theHSD17B1gene region, and their association with incident AD was examined.Results. Age at onset was earlier, and risk of AD was elevated from two- to threefold among women homozygous for the minor allele at 3 SNPs in intron 4 (rs676387), exon 6 (rs605059), and exon 4 inCOASY(rs598126). Carriers of the haplotype TCC, based on the risk alleles for these three SNPs, had an almost twofold increased risk of developing AD (hazard ratio = 1.8, 95% CI, 1.1–3.1).Conclusion. These findings support experimental and clinical studies of the neuroprotective role of estrogen.


2010 ◽  
Vol 82 (5-6) ◽  
pp. 247-250 ◽  
Author(s):  
Anjana Munshi ◽  
K. Rajeshwar ◽  
Subhash Kaul ◽  
E. Chandana ◽  
Gowhar Shafi ◽  
...  

1986 ◽  
Vol 6 (6) ◽  
pp. 1926-1935
Author(s):  
P J Mitchell ◽  
G Urlaub ◽  
L Chasin

We isolated and characterized three spontaneous mutants of Chinese hamster ovary cells that were deficient in dihydrofolate reductase activity. All three mutants contained no detectable enzyme activity and produced dihydrofolate reductase mRNA species that were shorter than those of the wild type by about 120 bases. Six exons are normally represented in this mRNA; exon 5 was missing in all three mutant mRNAs. Nuclease S1 analysis of the three mutants indicated that during the processing of the mutant RNA, exon 4 was spliced to exon 6. The three mutant genes were cloned, and the regions around exons 4 and 5 were sequenced. In one mutant, the GT dinucleotide at the 5' end of intron 5 had changed to CT. In a second mutant, the first base in exon 5 had changed from G to T. In a revertant of this mutant, this base was further mutated to A, a return to a purine. Approximately 25% of the mRNA molecules in the revertant were spliced correctly to produce an enzyme with one presumed amino acid change. In the third mutant, the AG at the 3' end of intron 4 had changed to AA. A mutation that partially reversed the mutant phenotype had changed the dinucleotide at the 5' end of intron 4 from GT to AT. The splicing pattern in this revertant was consistent with the use of cryptic donor and acceptor splice sites close to the original sites to produce an mRNA with three base changes and a protein with two amino acid changes. These mutations argue against a scanning model for the selection of splice site pairs and suggest that only a single splice site need be inactivated to bring about efficient exon skipping (a regulatory mechanism for some genes). The fact that all three mutants analyzed exhibited exon 5 splicing mutations indicates that these splice sites are hot spots for spontaneous mutation.


Sign in / Sign up

Export Citation Format

Share Document