scholarly journals One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction

10.1038/12160 ◽  
1999 ◽  
Vol 2 (9) ◽  
pp. 791-797 ◽  
Author(s):  
Janet E. Richmond ◽  
Erik M. Jorgensen
eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kang-Ying Qian ◽  
Wan-Xin Zeng ◽  
Yue Hao ◽  
Xian-Ting Zeng ◽  
Haowen Liu ◽  
...  

The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in C. elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.


The Lancet ◽  
1975 ◽  
Vol 305 (7907) ◽  
pp. 607-609 ◽  
Author(s):  
AdamN Bender ◽  
W King Engel ◽  
StevenP Ringel ◽  
MathewP Daniels ◽  
Zvi Vogel

1999 ◽  
Vol 354 (1381) ◽  
pp. 411-416 ◽  
Author(s):  
Bomie Han ◽  
Gerald D. Fischbach

The neuromuscular junction is a specialized synapse in that every action potential in the presynaptic nerve terminal results in an action potential in the postsynaptic membrane, unlike most interneuronal synapses where a single presynaptic input makes only a small contribution to the population postsynaptic response. The postsynaptic membrane at the neuromuscular junction contains a high density of neurotransmitter (acetylcholine) receptors and a high density of voltage–gated Na + channels. Thus, the large acetylcholine activated current occurs at the same site where the threshold for action potential generation is low. Acetylcholine receptor inducing activity (ARIA), a 42 kD protein, that stimulates synthesis of acetylcholine receptors and voltage–gated Na + channels in cultured myotubes, probably plays the same roles at developing and mature motor endplates in vivo . ARIA is synthesized as part of a larger, transmembrane, precursor protein called proARIA. Delivery of ARIA from motor neuron cell bodies in the spinal cord to the target endplates involves several steps, including proteolytic cleavage of proARIA. ARIA is also expressed in the central nervous system and it is abundant in the molecular layer of the cerebellum. In this paper we describe our first experiments on the processing and release of ARIA from subcellular fractions containing synaptosomes from the chick cerebellum as a model system.


Science ◽  
1973 ◽  
Vol 182 (4109) ◽  
pp. 293-295 ◽  
Author(s):  
D. M. Fambrough ◽  
D. B. Drachman ◽  
S. Satyamurti

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 312
Author(s):  
Tina V. A. Hansen ◽  
Heinz Sager ◽  
Céline E. Toutain ◽  
Elise Courtot ◽  
Cédric Neveu ◽  
...  

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


2016 ◽  
Vol 45 ◽  
pp. 328-339 ◽  
Author(s):  
Rodrigo Lozano ◽  
Kerry J. Gilmore ◽  
Brianna C. Thompson ◽  
Elise M. Stewart ◽  
Aaron M. Waters ◽  
...  

1975 ◽  
Vol 66 (1) ◽  
pp. 209-213 ◽  
Author(s):  
H C Fertuck ◽  
W Woodward ◽  
M M Salpeter

Acetylcholine receptors were inactivated in vivo at the mouse neuromuscular junction using alpha-bungarotoxin (alpha-BTX). It was found that neurally produced muscle contraction recovered within 4-8 days (halftime similar to 3 days). Actinomycin D interfered with this recovery, but did not affect normal nerve-stimulated muscle contraction. If the response was initially eliminated by [125-I]alpha-BTX and the end plates examined by EM autoradiography, no evidence of mass internalization of bound radioactivity during recovery was seen. The fine structure of the end plates and muscle was unaltered during the post-alpha-BTX recovery period.


Sign in / Sign up

Export Citation Format

Share Document