scholarly journals Lunar Tides in the Equatorial Electrojet and in the Ionosphere over the Magnetic Equator

Nature ◽  
1963 ◽  
Vol 200 (4911) ◽  
pp. 1083-1083 ◽  
Author(s):  
R. G. RASTOGI
2018 ◽  
Author(s):  
Tarique A. Siddiqui ◽  
Astrid Maute ◽  
Nick Pedatella ◽  
Yosuke Yamazaki ◽  
Hermann Lühr ◽  
...  

Abstract. The variabilities of the semidiurnal solar and lunar tide of the equatorial electrojet (EEJ) are investigated during the 2003, 2006, 2009 and 2013 major sudden stratospheric warming (SSW) events in this study. For this purpose, the ground-magnetometer recordings at the equatorial observatories in Huancayo and Fuquene are utilized. Results show a major enhancement in the amplitude of the EEJ semidiurnal lunar tide in each of the four warming events. The EEJ semidiurnal solar tidal amplitude shows an amplification prior to the onset of warmings, a reduction during the deceleration of the zonal mean zonal wind at 60° N and 10 hPa and a second enhancement a few days after the peak reversal of the zonal mean zonal wind during all the four SSWs. Results also reveal that the amplitude of the EEJ semidiurnal lunar tide becomes comparable or even greater than the amplitude of the EEJ semidiurnal solar tide during all these warming events. The present study also compares the EEJ semidiurnal solar and lunar tidal changes with numerical simulations of the variability of the migrating semidiurnal solar (SW2) and lunar (M2) tide in neutral temperature at ~ 120 km altitude. A better agreement between the enhancements of the EEJ semidiurnal lunar tide and the M2 tide in neutral temperature is observed in comparison with the enhancements of the EEJ semidiurnal solar tide and the SW2 tide in neutral temperature.


2006 ◽  
Vol 24 (5) ◽  
pp. 1429-1442 ◽  
Author(s):  
S. Ray ◽  
A. Paul ◽  
A. DasGupta

Abstract. The irregularities in the electron density distribution of the ionosphere over the equatorial region frequently disrupt space-based communication and navigation links by causing severe amplitude and phase scintillations of signals. Development of a specification and forecast system for scintillations is needed in view of the increased reliance on space-based communication and navigation systems, which are vulnerable to ionospheric scintillations. It has been suggested in recent years that a developed equatorial anomaly in the afternoon hours, with a steep gradient of the F-region ionization or Total Electron Content (TEC) in the region between the crest and the trough, may be taken as a precursor to scintillations on transionospheric links. Latitudinal gradient of TEC measured using Faraday Rotation technique from LEO NOAA 12/14 transmissions during the afternoon hours at Calcutta shows a highly significant association with L-band scintillations recorded on the INMARSAT link, also from Calcutta, during the equinoxes, August through October 2000, and February through April 2001. The daytime equatorial electrojet is believed to control the development of the equatorial anomaly and plays a crucial role in the subsequent development of F-region irregularities in the post-sunset hours. The diurnal maximum and integrated value (integrated from the time of onset of plasma influx to off-equatorial latitudes till local sunset) of the strength of the electrojet in the Indian longitude sector shows a significant association with post-sunset L-band scintillations recorded at Calcutta during the two equinoxes mentioned earlier. Generation of equatorial irregularities over the magnetic equator in the post-sunset hours is intimately related to the variation of the height of the F-layer around sunset. Ionosonde data from Kodaikanal, a station situated close to the magnetic equator, has been utilized to calculate the vertical drift of the F-layer over the magnetic equator for the period August through October 2000. The post-sunset F-region height rise over the magnetic equator shows a remarkable correspondence with the occurrence of scintillations at Calcutta located near the northern crest of the equatorial anomaly. Existence of a flat-topped ionization distribution over the magnetic equator around sunset has been suggested as a possible indication of occurrence of post-sunset scintillations. Width of the latitudinal distribution of ionization obtained from DMSP satellite shows some correspondence with post-sunset L-band scintillations. During the period of observation of the present study (August through October 2000, and February through April 2001), it has been observed that although the probability of occurrence of scintillations is high on days with flat-topped ion density variation over the equator, there are cases when no scintillations were observed even when a pronounced flat top variation was recorded.


2021 ◽  
Author(s):  
Yaxian Li ◽  
Gang Chen

<p>We present an analysis of the perturbations and wave characteristics in equatorial electrojet (EEJ) and equatorial zonal winds in the mesosphere and lower thermosphere region during three sudden stratospheric warming (SSW) events, based on the wind observations by two meteor radars in Indonesia and the geomagnetic field observations in India. During three SSWs, the shifting semidiurnal perturbations are consistently observed in the EEJ and accompanied with strong 2-day periodic perturbations simultaneously. The semidiurnal lunar (L2) tidal amplitudes in the EEJ and zonal winds show the prominent enhancements during the episodes of EEJ perturbations. The time-period spectra of the L2 tidal amplitudes in both the EEJ and zonal winds present the obvious quasi-2-day wave (QTDW) amplification with good agreement during these periods. Our results firstly reveal the important contributions of QTDW to EEJ perturbations during SSWs and the semidiurnal lunar tides modulated by QTDW serve as the main forcing agent therein</p>


2015 ◽  
Vol 33 (2) ◽  
pp. 235-243 ◽  
Author(s):  
T. A. Siddiqui ◽  
H. Lühr ◽  
C. Stolle ◽  
J. Park

Abstract. It has been known for many decades that the lunar tidal influence in the equatorial electrojet (EEJ) is noticeably enhanced during Northern Hemisphere winters. Recent literature has discussed the role of stratospheric sudden warming (SSW) events behind the enhancement of lunar tides and the findings suggest a positive correlation between the lunar tidal amplitude and lower stratospheric parameters (zonal mean air temperature and zonal mean zonal wind) during SSW events. The positive correlation raises the question whether an inverse approach could also be developed which makes it possible to deduce the occurrence of SSW events before their direct observations (before 1952) from the amplitude of the lunar tides. This study presents an analysis technique based on the phase of the semi-monthly lunar tide to determine the lunar tidal modulation of the EEJ. A statistical approach using the superposed epoch analysis is also carried out to formulate a relation between the EEJ tidal amplitude and lower stratospheric parameters. Using these results, we have estimated a threshold value for the tidal wave power that could be used to identify years with SSW events from magnetic field observations.


2018 ◽  
Vol 36 (6) ◽  
pp. 1545-1562 ◽  
Author(s):  
Tarique A. Siddiqui ◽  
Astrid Maute ◽  
Nick Pedatella ◽  
Yosuke Yamazaki ◽  
Hermann Lühr ◽  
...  

Abstract. The variabilities of the semidiurnal solar and lunar tides of the equatorial electrojet (EEJ) are investigated during the 2003, 2006, 2009 and 2013 major sudden stratospheric warming (SSW) events in this study. For this purpose, ground-magnetometer recordings at the equatorial observatories in Huancayo and Fúquene are utilized. Results show a major enhancement in the amplitude of the EEJ semidiurnal lunar tide in each of the four warming events. The EEJ semidiurnal solar tidal amplitude shows an amplification prior to the onset of warmings, a reduction during the deceleration of the zonal mean zonal wind at 60∘ N and 10 hPa, and a second enhancement a few days after the peak reversal of the zonal mean zonal wind during all four SSWs. Results also reveal that the amplitude of the EEJ semidiurnal lunar tide becomes comparable or even greater than the amplitude of the EEJ semidiurnal solar tide during all these warming events. The present study also compares the EEJ semidiurnal solar and lunar tidal changes with the variability of the migrating semidiurnal solar (SW2) and lunar (M2) tides in neutral temperature and zonal wind obtained from numerical simulations at E-region heights. A better agreement between the enhancements of the EEJ semidiurnal lunar tide and the M2 tide is found in comparison with the enhancements of the EEJ semidiurnal solar tide and the SW2 tide in both the neutral temperature and zonal wind at the E-region altitudes.


2006 ◽  
Vol 24 (12) ◽  
pp. 3313-3327 ◽  
Author(s):  
C. Amory-Mazaudier ◽  
M. Le Huy ◽  
Y. Cohen ◽  
V. Doumbia ◽  
A. Bourdillon ◽  
...  

Abstract. During many past decades, scientists from various countries have studied separately the atmospheric motions in the lower atmosphere, in the Earth's magnetic field, in the magnetospheric currents, etc. All of these separate studies lead today to the global study of the Sun and Earth connections, and as a consequence, new scientific programs (IHY- International Heliophysical Year, CAWSES- Climate and Weather in the Sun-Earth System) are defined, in order to assume this new challenge. In the past, many scientists did not have the possibility to collect data at the same time in the various latitude and longitude sectors. Now, with the progress of geophysical sciences in many developing countries, it is possible to have access to worldwide data sets. This paper presents the particularities of geophysical parameters measured by the Vietnamese instrument networks. It introduces a cooperative Vietnamese-IGRGEA (International Geophysical Research Group Europe Africa) project, and presents, for the first time, to the international community, the geophysical context of Vietnam. Concerning the ionosphere: since 1963, during four solar cycles, the ionosonde at Phu Thuy (North Vietnam) was operating. The Phu Thuy data exhibits the common features for the ionospheric parameters, previously observed in other longitude and latitude sectors. The critical frequencies of the E, F1 and F2 ionospheric layers follow the variation of the sunspot cycle. F2 and E critical frequencies also exhibit an annual variation. The first maps of TEC made with data from GPS receivers recently installed in Vietnam illustrate the regional equatorial pattern, i.e. two maxima of electronic density at 15° N and 15° S from the magnetic equator and a trough of density at the magnetic equator. These features illustrate the equatorial fountain effect. Concerning the Earth's magnetic field: a strong amplitude of the equatorial electrojet was first observed by the CHAMP satellite at the height of 400 km in the Vietnamese longitude sector. In this paper we compare the ground magnetic observations of the Indian and Vietnamese magnetometer networks. This comparison highlights the regional structure of the amplitude of the equatorial electrojet, which is stronger in Vietnam than in India. Concerning the monsoon: Vietnam exhibits a strong monsoon and has mainly one rainy season peaking in August, hence associated with the southwest monsoon flow. But some monsoon variability from one place to another is related to the orography. In the mountainous northern regions of Vietnam, there is an "early" monsoon peaking in July. In the coastal regions between 12° N and 19° N the monsoon season is centered on October. Concerning lightning: Vietnam is a country of strong atmospheric storms with some areas of very intense lightning in North Vietnam (22,5° N, 105° E) and in South Vietnam (11° N, 107° E). In North Vietnam strong lightning is associated with the most intense rainy region.


2008 ◽  
Vol 26 (8) ◽  
pp. 2459-2470 ◽  
Author(s):  
R. Dhanya ◽  
S. Gurubaran ◽  
K. Emperumal

Abstract. The spaced antenna medium frequency (MF) radar at Tirunelveli (8.7° N, 77.8° E, geographic; 1.7° N, magnetic dip), the only one of its kind currently operating close to the magnetic equator, has provided an opportunity to investigate the electrodynamical processes related to the equatorial electrojet (EEJ) and their influence on the radar scatterers at medium frequencies in the lower E-region heights (90–98 km). Making use of the full correlation analysis that enables determination of useful geometrical parameters from the ground diffraction pattern, the present work delineates for the first time the characteristics of the radar scatterers during the occurrences of equatorial sporadic E (Esq) and blanketing sporadic E (Esb) noticed in simultaneous ionospheric sounding records at Tirunelveli. The ground magnetometer data provide indirect information on the strength of the EEJ and afternoon reverse EEJ or counterelectrojet (CEJ). The results presented in this work also reveal the height dependence of the radar echo intensity and some of the geometrical parameters at certain times, thus clearly bringing out the complex interplay of various physical processes in the probing region.


Sign in / Sign up

Export Citation Format

Share Document