Antisense oligonucleotides directed against the viral RNA polymerase gene enhance survival of mice infected with influenza A

10.1038/9893 ◽  
1999 ◽  
Vol 17 (6) ◽  
pp. 583-587 ◽  
Author(s):  
Tadashi Mizuta ◽  
Masatoshi Fujiwara ◽  
Toshifumi Hatta ◽  
Takayuki Abe ◽  
Naoko Miyano-Kurosaki ◽  
...  
2011 ◽  
Vol 156 (11) ◽  
pp. 1979-1987 ◽  
Author(s):  
Wanyi Li ◽  
Xiaofan Yang ◽  
Yan Jiang ◽  
Baoning Wang ◽  
Yuan Yang ◽  
...  

2013 ◽  
Vol 20 (31) ◽  
pp. 3923-3934 ◽  
Author(s):  
Fangyuan Shi ◽  
Yuanchao Xie ◽  
Lifang Shi ◽  
Wenfang Xu

ChemMedChem ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mafalda Pagano ◽  
Daniele Castagnolo ◽  
Martina Bernardini ◽  
Anna Lucia Fallacara ◽  
Ilaria Laurenzana ◽  
...  

Author(s):  
Hitoshi Inada ◽  
Motoaki Seki ◽  
Hiromichi Morikawa ◽  
Mitsuo Nishimura ◽  
Koh Iba

2007 ◽  
Vol 53 (10) ◽  
pp. 1133-1140 ◽  
Author(s):  
Safaa Lamhoujeb ◽  
Hugues Charest ◽  
Ismail Fliss ◽  
Solange Ngazoa ◽  
Julie Jean

Noroviruses are recognized as the most common cause of nonbacterial gastroenteritis worldwide. In this study, we investigated the molecular epidemiology of noroviral isolates in Canada from 2004 to 2005 by sequencing the RNA polymerase gene and capsid N-terminal/shell (N/S) domain. Norovirus genogroups I and II were thus found to have co-circulated in Canada during the studied period, with a higher incidence of genogroup II (95.7%). The GII-4 or Lordsdale subgroup was the predominant genotype, suggesting that norovirus genogroup II is the major cause of viral gastroenteritis in Canada, as it is in many other countries. Phylogenetic analyses of the RNA polymerase gene and the capsid N/S domain indicated different genotypes for 2 strains, suggesting probable genetic recombination. Sequencing of the norovirus polymerase gene may reflect actual classification but should be supported by sequence information obtained from the capsid gene.


2007 ◽  
Vol 82 (5) ◽  
pp. 2295-2304 ◽  
Author(s):  
Glenn A. Marsh ◽  
Raúl Rabadán ◽  
Arnold J. Levine ◽  
Peter Palese

ABSTRACT The genome of the influenza A virus is composed of eight different segments of negative-sense RNA. These eight segments are incorporated into budding virions in an equimolar ratio through a mechanism that is not fully understood. Two different models have been proposed for packaging the viral ribonucleoproteins into newly assembling virus particles: the random-incorporation model and the selective-incorporation model. In the last few years, increasing evidence from many different laboratories that supports the selective-incorporation model has been accumulated. In particular, different groups have shown that some large viral RNA regions within the coding sequences at both the 5′ and 3′ ends of almost every segment are sufficient for packaging foreign RNA sequences. If the packaging regions are crucial for the viability of the virus, we would expect them to be conserved. Using large-scale analysis of influenza A virus sequences, we developed a method of identifying conserved RNA regions whose conservation cannot be explained by population structure or amino acid conservation. Interestingly, the conserved sequences are located within the regions identified as important for efficient packaging. By utilizing influenza virus reverse genetics, we have rescued mutant viruses containing synonymous mutations within these highly conserved regions. Packaging of viral RNAs in these viruses was analyzed by reverse transcription using a universal primer and quantitative PCR for individual segments. Employing this approach, we have identified regions in the polymerase gene segments that, if mutated, result in reductions of more than 90% in the packaging of that particular polymerase viral RNA. Reductions in the level of packaging of a polymerase viral RNA frequently resulted in reductions of other viral RNAs as well, and the results form a pattern of hierarchy of segment interactions. This work provides further evidence for a selective packaging mechanism for influenza A viruses, demonstrating that these highly conserved regions are important for efficient packaging.


Virus Genes ◽  
2007 ◽  
Vol 35 (3) ◽  
pp. 681-684 ◽  
Author(s):  
Cintia Lopes de Brito Magalhães ◽  
Bárbara Resende Quinan ◽  
Renata Franco Vianna Novaes ◽  
João Rodrigues dos Santos ◽  
Erna Geessien Kroon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document