scholarly journals The Fight against the Influenza A Virus H1N1: Synthesis, Molecular Modeling, and Biological Evaluation of Benzofurazan Derivatives as Viral RNA Polymerase Inhibitors

ChemMedChem ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mafalda Pagano ◽  
Daniele Castagnolo ◽  
Martina Bernardini ◽  
Anna Lucia Fallacara ◽  
Ilaria Laurenzana ◽  
...  
2013 ◽  
Vol 20 (31) ◽  
pp. 3923-3934 ◽  
Author(s):  
Fangyuan Shi ◽  
Yuanchao Xie ◽  
Lifang Shi ◽  
Wenfang Xu

2021 ◽  
Author(s):  
Benjamin E Nilsson-Payant ◽  
Benjamin R. tenOever ◽  
Aartjan J.W. te Velthuis

Influenza A viruses are negative-sense RNA viruses that rely on their own viral replication machinery to replicate and transcribe their segmented single-stranded RNA genome. The viral ribonucleoprotein complexes in which viral RNA is replicated consist of a nucleoprotein scaffold around which the RNA genome is bound, and a heterotrimeric RNA-dependent RNA polymerase that catalyzes viral replication. The RNA polymerase copies the viral RNA (vRNA) via a replicative intermediate, called the complementary RNA (cRNA), and subsequently uses this cRNA to make more vRNA copies. To ensure that new cRNA and vRNA molecules are associated with ribonucleoproteins in which they can be amplified, the active RNA polymerase recruits a second polymerase to encapsidate the cRNA or vRNA. Host factor ANP32A has been shown to be essential for viral replication and to facilitate the formation of a dimer between viral RNA polymerases and differences between mammalian and avian ANP32A proteins are sufficient to restrict viral replication. It has been proposed that ANP32A is only required for the synthesis of vRNA molecules from a cRNA, but not vice versa. However, this view does not match recent molecular evidence. Here we use minigenome assays, virus infections, and viral promoter mutations to demonstrate that ANP32A is essential for both vRNA and cRNA synthesis. Moreover, we show that ANP32 is not only needed for the actively replicating polymerase, but also for the polymerase that is encapsidating nascent viral RNA products. Overall, these results provide new insights into influenza A virus replication and host adaptation.


2018 ◽  
Vol 32 (8) ◽  
pp. 4380-4393 ◽  
Author(s):  
Chi‐Ping Chan ◽  
Chun‐Kit Yuen ◽  
Pak‐Hin Hinson Cheung ◽  
Sin‐Yee Fung ◽  
Pak‐Yin Lui ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 33 (5) ◽  
pp. 108342
Author(s):  
Nina Sun ◽  
Chunfeng Li ◽  
Xiao-Feng Li ◽  
Yong-Qiang Deng ◽  
Tao Jiang ◽  
...  

2017 ◽  
Author(s):  
Judith Oymans ◽  
Aartjan J.W. te Velthuis

AbstractThe influenza A virus genome consists of eight segments of single-stranded RNA. These segments are replicated and transcribed by a viral RNA-dependent RNA polymerase (RdRp) that is made up of the influenza virus proteins PB1, PB2 and PA. To copy the viral RNA (vRNA) genome segments and the complementary RNA (cRNA) segments, the replicative intermediate of viral replication, the RdRp must use two promoters and two differentde novoinitiation mechanisms. On the vRNA promoter, the RdRp initiates on the 3’ terminus, while on the cRNA promoter the RdRp initiates internally and subsequently realigns the nascent vRNA product to ensure that the template is copied in full. In particular the latter process, which is also used by other RNA viruses, is not understood. Here we provide mechanistic insight into prime-realignment during influenza virus replication and show that it is controlled by the priming loop and a helix-loop-helix motif of the PB1 subunit of the RdRp. Overall, these observations advance our understanding of how the influenza A virus initiates viral replication and amplifies the genome correctly.ImportanceInfluenza A viruses cause severe disease in humans and are considered a major threat to our economy and health. The viruses replicate and transcribe their genome using an enzyme called the RNA polymerases. To ensure that the genome is amplified faithfully and abundant viral mRNAs are made for viral protein synthesis, the RNA polymerase must work correctly. In this report, we provide insight into the mechanism that the RNA polymerase employs to ensure that the viral genome is copied correctly.


2021 ◽  
Author(s):  
Benjamin E. Nilsson-Payant ◽  
Benjamin R. tenOever ◽  
Aartjan J.W. te Velthuis

Influenza A viruses are negative-sense RNA viruses that rely on their own viral replication machinery to replicate and transcribe their segmented single-stranded RNA genome. The viral ribonucleoprotein complexes in which viral RNA is replicated consist of a nucleoprotein scaffold around which the RNA genome is bound, and a heterotrimeric RNA-dependent RNA polymerase that catalyzes viral replication. The RNA polymerase copies the viral RNA (vRNA) via a replicative intermediate, called the complementary RNA (cRNA), and subsequently uses this cRNA to make more vRNA copies. To ensure that new cRNA and vRNA molecules are associated with ribonucleoproteins in which they can be amplified, the active RNA polymerase recruits a second polymerase to encapsidate the cRNA or vRNA. Host factor ANP32A has been shown to be essential for viral replication and to facilitate the formation of a dimer between viral RNA polymerases. Differences between mammalian and avian ANP32A proteins are sufficient to restrict viral replication. It has been proposed that ANP32A is only required for the synthesis of vRNA molecules from a cRNA, but not vice versa. However, this view does not match recent molecular evidence. Here we use minigenome assays, virus infections, and viral promoter mutations to demonstrate that ANP32A is essential for both vRNA and cRNA synthesis. Moreover, we show that ANP32 is not only needed for the actively replicating polymerase, but also for the polymerase that is encapsidating nascent viral RNA products. Overall, these results provide new insights into influenza A virus replication and host adaptation. IMPORTANCE Zoonotic avian influenza A viruses pose a constant threat to global health, and they have the potential to cause pandemics. Species variations in host factor ANP32A play a key role in supporting the activity of avian influenza A virus RNA polymerases in mammalian hosts. Here we show that ANP32A acts at two stages in the influenza A virus replication cycle, supporting recent structural experiments, in line with its essential role. Understanding how ANP32A supports viral RNA polymerase activity and how it supports avian polymerase function in mammalian hosts is important for understanding influenza A virus replication and the development of antiviral strategies against influenza A viruses.


2017 ◽  
Vol 92 (3) ◽  
Author(s):  
Judith Oymans ◽  
Aartjan J. W. te Velthuis

ABSTRACTThe influenza A virus genome consists of eight segments of single-stranded RNA. These segments are replicated and transcribed by a viral RNA-dependent RNA polymerase (RdRp) that is made up of the influenza virus proteins PB1, PB2, and PA. To copy the viral RNA (vRNA) genome segments and the cRNA segments, the replicative intermediate of viral replication, the RdRp must use two promoters and two differentde novoinitiation mechanisms. On the vRNA promoter, the RdRp initiates on the 3′ terminus, while on the cRNA promoter, the RdRp initiates internally and subsequently realigns the nascent vRNA product to ensure that the template is copied in full. In particular, the latter process, which is also used by other RNA viruses, is not understood. Here we provide mechanistic insight into priming and realignment during influenza virus replication and show that it is controlled by the priming loop and a helix-loop-helix motif of the PB1 subunit of the RdRp. Overall, these observations advance our understanding of how the influenza A virus initiates viral replication and amplifies the genome correctly.IMPORTANCEInfluenza A viruses cause severe disease in humans and are considered a major threat to our economy and health. The viruses replicate and transcribe their genome by using an enzyme called the RNA polymerases. To ensure that the genome is amplified faithfully and that abundant viral mRNAs are made for viral protein synthesis, the RNA polymerase must work correctly. In this report, we provide insight into the mechanism that the RNA polymerase employs to ensure that the viral genome is copied correctly.


2004 ◽  
Vol 78 (17) ◽  
pp. 9568-9572 ◽  
Author(s):  
Frank T. Vreede ◽  
Tanis E. Jung ◽  
George G. Brownlee

ABSTRACT The RNA-dependent RNA polymerase of influenza A virus is responsible for both transcription and replication of negative-sense viral RNA. It is thought that a “switching” mechanism regulates the transition between these activities. We demonstrate that, in the presence of preexisting viral RNA polymerase and nucleoprotein (NP), influenza A virus synthesizes both mRNA (transcription) and cRNA (replication) early in infection. We suggest that there may be no switch regulating the initiation of RNA synthesis and present a model suggesting that nascent cRNA is degraded by host cell nucleases unless it is stabilized by newly synthesized viral RNA polymerase and NP.


Sign in / Sign up

Export Citation Format

Share Document