scholarly journals The ubiquitin-specific protease 17 is involved in virus-triggered type I IFN signaling

Cell Research ◽  
2010 ◽  
Vol 20 (7) ◽  
pp. 802-811 ◽  
Author(s):  
Rui Chen ◽  
Lu Zhang ◽  
Bo Zhong ◽  
Bo Tan ◽  
Yu Liu ◽  
...  
2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Hui Yuan ◽  
Jia You ◽  
Hongjuan You ◽  
Chunfu Zheng

ABSTRACT Type I interferons (IFNs), as major components of the innate immune system, play a vital role in host resistance to a variety of pathogens. Canonical signaling mediated by type I IFNs activates the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway through binding to the IFN-α/β receptor (IFNAR), resulting in transcription of IFN-stimulated genes (ISGs). However, viruses have evolved multiple strategies to evade this process. Here, we report that herpes simplex virus 1 (HSV-1) ubiquitin-specific protease (UL36USP) abrogates the type I IFN-mediated signaling pathway independent of its deubiquitinase (DUB) activity. In this study, ectopically expressed UL36USP inhibited IFN-β-induced activation of ISRE promoter and transcription of ISGs, and overexpression of UL36USP lacking DUB activity did not influence this effect. Furthermore, UL36USP was demonstrated to antagonize IFN-β-induced activation of JAKs and STATs via specifically binding to the IFNAR2 subunit and blocking the interaction between JAK1 and IFNAR2. More importantly, knockdown of HSV-1 UL36USP restored the formation of JAK1-IFNAR2 complex. These findings underline the roles of UL36USP-IFNAR2 interaction in counteracting the type I IFN-mediated signaling pathway and reveal a novel evasion mechanism of antiviral innate immunity by HSV-1. IMPORTANCE Type I IFNs mediate transcription of numerous antiviral genes, creating a remarkable antiviral state in the host. Viruses have evolved various mechanisms to evade this response. Our results indicated that HSV-1 encodes a ubiquitin-specific protease (UL36USP) as an antagonist to subvert type I IFN-mediated signaling. UL36USP was identified to significantly inhibit IFN-β-induced signaling independent of its deubiquitinase (DUB) activity. The underlying mechanism of UL36USP antagonizing type I IFN-mediated signaling was to specifically bind with IFNAR2 and disassociate JAK1 from IFNAR2. For the first time, we identify UL36USP as a crucial suppressor for HSV-1 to evade type I IFN-mediated signaling. Our findings also provide new insights into the innate immune evasion by HSV-1 and will facilitate our understanding of host-virus interplay.


Immunology ◽  
2019 ◽  
Vol 159 (3) ◽  
pp. 309-321
Author(s):  
Yukang Yuan ◽  
Ying Miao ◽  
Chenhua Zeng ◽  
Jin Liu ◽  
Xiangjie Chen ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yujia Li ◽  
Max Xuezhong Ma ◽  
Bo Qin ◽  
Liang-Tzung Lin ◽  
Christopher D. Richardson ◽  
...  

Background and Aims. Ubiquitin-specific protease 18 (USP18) is involved in immunoregulation and response to interferon- (IFN-) based treatment in patients chronically infected with hepatitis C virus (HCV). We investigated whether and how its upregulation alters HCV infection. Methods. Overexpression of wild-type (USP18 WT) or catalytically inactive mutant (USP18 C64S) USP18 was examined for effects on HCV replication in the absence and presence of IFNα or IFNλ using both the HCV-infective model and replicon cells. The IFN signaling pathway was assessed via STAT1 phosphorylation (western blot) and downstream ISG expression (real-time PCR). Mechanistic roles were sought by quantifying microRNA-122 levels and J6/JFH1 infectivity of Huh7.5 cells. Results. We found that overexpression of either USP18 WT or USP18 C64S stimulated HCV production and blunted the anti-HCV effect of IFNα and IFNλ in the infective model but not in the replicon system. Overexpressed USP18 showed no effect on Jak/STAT signaling nor on microRNA-122 expression. However, USP18 upregulation markedly increased J6/JFH1 infectivity and promoted the expression of the key HCV entry factor CD81 on Huh7.5 cells. Conclusions. USP18 stimulates HCV production and blunts the effect of both type I and III IFNs by fostering a cellular environment characterized by upregulation of CD81, promoting virus entry and infectivity.


2020 ◽  
Vol 21 (18) ◽  
pp. 6825
Author(s):  
Ji An Kang ◽  
Young Joo Jeon

Eukaryotic proteomes are enormously sophisticated through versatile post-translational modifications (PTMs) of proteins. A large variety of code generated via PTMs of proteins by ubiquitin (ubiquitination) and ubiquitin-like proteins (Ubls), such as interferon (IFN)-stimulated gene 15 (ISG15), small ubiquitin-related modifier (SUMO) and neural precursor cell expressed, developmentally downregulated 8 (NEDD8), not only provides distinct signals but also orchestrates a plethora of biological processes, thereby underscoring the necessity for sophisticated and fine-tuned mechanisms of code regulation. Deubiquitinases (DUBs) play a pivotal role in the disassembly of the complex code and removal of the signal. Ubiquitin-specific protease 18 (USP18), originally referred to as UBP43, is a major DUB that reverses the PTM of target proteins by ISG15 (ISGylation). Intriguingly, USP18 is a multifaceted protein that not only removes ISG15 or ubiquitin from conjugated proteins in a deconjugating activity-dependent manner but also acts as a negative modulator of type I IFN signaling, irrespective of its catalytic activity. The function of USP18 has become gradually clear, but not yet been completely addressed. In this review, we summarize recent advances in our understanding of the multifaceted roles of USP18. We also highlight new insights into how USP18 is implicated not only in physiology but also in pathogenesis of various human diseases, involving infectious diseases, neurological disorders, and cancers. Eventually, we integrate a discussion of the potential of therapeutic interventions for targeting USP18 for disease treatment.


Author(s):  
Luis Gustavo Perez Rivas ◽  
Marily Theodoropoulou ◽  
Francesco Ferrau ◽  
Clara Nusser ◽  
Kohei Kawaguchi ◽  
...  

2008 ◽  
Vol 31 (4) ◽  
pp. 13
Author(s):  
Martin Hyrcza ◽  
Mario Ostrowski ◽  
Sandy Der

Plasmacytoid dendritic cells (pDCs) are innate immune cells able to produce large quantities of type I interferons (IFN) when activated. Human immunodeficiency virus (HIV)-infected patients show generalized immune dysfunction characterized in part by chronic interferon response. In this study we investigated the role of dendritic cells inactivating and maintaining this response. Specifically we compared the IFN geneactivity in pDCs in response to several viruses and TLR agonists. We hypothesized that 1) the pattern of IFN gene transcription would differ in pDCs treated with HIV than with other agents, and 2) that pDCs from patients from different stages of disease would respond differently to the stimulations. To test these hypotheses, we obtained pDCs from 15 HIV-infected and uninfected individuals and treated freshly isolated pDCs with either HIV (BAL strain), influenza virus (A/PR/8/34), Sendai virus (Cantell strain), TLR7 agonist(imiquimod), or TLR9 agonist (CpG-ODN) for 6h. Type I IFN gene transcription was monitored by real time qPCRfor IFNA1, A2, A5, A6, A8,A17, B1, and E1, and cytokine levels were assayed by Cytometric Bead Arrays forTNF?, IL6, IL8, IL10, IL1?, and IL12p70. pDC function as determined by these two assays showed no difference between HIV-infected and uninfected patients or between patients with early or chronic infection. Specifically, HIV did notinduce type I IFN gene expression, whereas influenza virus, Sendai virus and imiquimod did. Similarly, HIV failed to induce any cytokine release from pDCs in contrast to influenza virus, Sendai virus and imiquimod, which stimulatedrelease of TNF?, IL6, or IL8. Together these results suggest that the reaction of pDCs to HIV virus is quantitatively different from the response to agents such as virus, Sendai virus, and imiquimod. In addition, pDCs from HIV-infected persons have responses similar to pDCs from uninfected donors, suggesting, that the DC function may not be affected by HIV infection.


Sign in / Sign up

Export Citation Format

Share Document