scholarly journals Targeting, resolving and quantifying cellular structures by single‐molecule localization microscopy

EMBO Reports ◽  
2012 ◽  
Vol 13 (12) ◽  
pp. 1043-1045 ◽  
Author(s):  
Jean‐Baptiste Sibarita ◽  
Mike Heilemann
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anindita Dasgupta ◽  
Joran Deschamps ◽  
Ulf Matti ◽  
Uwe Hübner ◽  
Jan Becker ◽  
...  

Abstract3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


2020 ◽  
Author(s):  
Anindita Dasgupta ◽  
Joran Deschamps ◽  
Ulf Matti ◽  
Uwe Hübner ◽  
Jan Becker ◽  
...  

Abstract3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. Supercritical angle fluorescence strongly depends on the z-position of the fluorophore and can be used for z localization in a method called supercritical angle localization microscopy (SALM). Here, we realize the full potential of SALM by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying new fitting routines to extract precise intensities of single emitters, resulting in a four-fold improved z-resolution compared to the state of the art. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


2019 ◽  
Author(s):  
Lekha Patel ◽  
Dylan M. Owen ◽  
Edward A.K. Cohen

AbstractMany recent advancements in single molecule localization microscopy exploit the stochastic photo-switching of fluorophores to reveal complex cellular structures beyond the classical diffraction limit. However, this same stochasticity makes counting the number of molecules to high precision extremely challenging. Modeling the photo-switching behavior of a fluorophore as a continuous time Markov process transitioning between a single fluorescent and multiple dark states, and fully mitigating for missed blinks and false positives, we present a method for computing the exact probability distribution for the number of observed localizations from a single photo-switching fluorophore. This is then extended to provide the probability distribution for the number of localizations in a dSTORM experiment involving an arbitrary number of molecules. We demonstrate that when training data is available to estimate photo-switching rates, the unknown number of molecules can be accurately recovered from the posterior mode of the number of molecules given the number of localizations.


2019 ◽  
Author(s):  
Andreas M. Arnold ◽  
Magdalena C. Schneider ◽  
Christoph Hüsson ◽  
Robert Sablatnig ◽  
Mario Brameshuber ◽  
...  

AbstractWhile single-molecule localization microscopy (SMLM) offers the invaluable prospect to visualize cellular structures below the diffraction limit of light microscopy, its potential could not be fully capitalized due to its inherent susceptibility to blinking artifacts. Particularly, overcounting of single molecule localizations has impeded a reliable and sensitive detection of biomolecular nanoclusters. Here we introduce a 2-Color Localization microscopy And Significance Testing Approach (2-CLASTA), providing a parameter-free statistical framework for the analysis of SMLM data via significance testing methods. 2-CLASTA yields p-values for the null hypothesis of random biomolecular distributions, independent of the blinking behavior of the chosen fluorescent labels. We validated the method both by computer simulations as well as experimentally, using protein concatemers as a mimicry of biomolecular clustering. As the new approach it is not affected by overcounting artifacts, it is able to detect biomolecular clustering of various shapes at high sensitivity down to a level of dimers.


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mickaël Lelek ◽  
Melina T. Gyparaki ◽  
Gerti Beliu ◽  
Florian Schueder ◽  
Juliette Griffié ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan M. Szalai ◽  
Bruno Siarry ◽  
Jerónimo Lukin ◽  
David J. Williamson ◽  
Nicolás Unsain ◽  
...  

AbstractSingle-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule’s image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


Sign in / Sign up

Export Citation Format

Share Document