scholarly journals Protein kinase C modulates telomerase activity in human cervical cancer cells

2001 ◽  
Vol 33 (3) ◽  
pp. 156-163 ◽  
Author(s):  
Yong Wook Kim ◽  
Soo Young Hur ◽  
Tae Eung Kim ◽  
Joon Mo Lee ◽  
Sung Eun Namkoong ◽  
...  
2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Na Li ◽  
Wei Zhang

Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells.


2018 ◽  
Vol 18 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Madhumitha Kedhari Sundaram ◽  
Mohammad Zeeshan Ansari ◽  
Abdullah Al Mutery ◽  
Maryam Ashraf ◽  
Reem Nasab ◽  
...  

Introduction: Epidemiological studies indicate that diet rich in fruits and vegetables is associated with decreased cancer risk thereby indicating that dietary polyphenols can be potential chemo-preventive agents. The reversible nature of epigenetic modifications makes them a favorable target for cancer prevention. Polyphenols have been shown to reverse aberrant epigenetic patterns by targeting the regulatory enzymes, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). In vitro and in silico studies of DNMTs and HDACs were planned to examine genistein’s role as a natural epigenetic modifier in human cervical cancer cells, HeLa. Methods: Expression of the tumour suppressor genes (TSGs) [MGMT, RARβ, p21, E-cadherin, DAPK1] as well the methylation status of their promoters were examined alongwith the activity levels of DNMT and HDAC enzymes after treatment with genistein. Expression of DNMTs and HDACs was also studied. In-silico studies were performed to determine the interaction of genistein with DNMTs and HDACs. Results: Genistein treatment significantly reduced the expression and enzymatic activity of both DNMTs and HDACs in a time-dependent way. Molecular modeling data suggest that genistein can interact with various members of DNMT and HDAC families and support genistein mediated inhibition of their activity. Timedependent exposure of genistein reversed the promoter region methylation of the TSGs and re-established their expression. Conclusions: In this study, we find that genistein is able to reinstate the expression of the TSGs studied by inhibiting the action of DNMTs and HDACs. This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.


2010 ◽  
Vol 49 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Wei-Chun Chang ◽  
Ching-Hung Hsieh ◽  
Meen-Woon Hsiao ◽  
Wu-Chou Lin ◽  
Yao-Ching Hung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document