scholarly journals Focal Increases of White Matter Glucose Utilization Produced by Electrical Stimulation of Rat Motor Cortex

1983 ◽  
Vol 3 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Frank R. Sharp ◽  
Sherzad Bzorgchami ◽  
Thomas Kilduff

The right motor cortex was electrically stimulated in adult, awake rats for 45 min. Local cerebral glucose utilization (LCGU) was measured in white matter pathways with the (14C)-2-deoxyglucose method. Stimulation increased LCGU in focal regions of the right internal capsule to 51.3 μmol/100 g/min, compared to 39.8 on the control left side. Stimulation also increased LCGU in the right, medial pontine pyramidal tract to 36.2 μmol/100 g/min, compared with 27.3 on the control left side. The data demonstrate that electrical stimulation of motor cortex neurons increases LCGU 30 to 40% in the efferent myelinated axons of those neurons.

2021 ◽  
Vol 14 (1) ◽  
pp. 131-140
Author(s):  
Emily A. Mankin ◽  
Zahra M. Aghajan ◽  
Peter Schuette ◽  
Michelle E. Tran ◽  
Natalia Tchemodanov ◽  
...  

2012 ◽  
Vol 90 (6) ◽  
pp. 370-378
Author(s):  
Christophe Nuti ◽  
François Vassal ◽  
Patrick Mertens ◽  
Jean-Jacques Lemaire ◽  
Michel Magnin ◽  
...  

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


2001 ◽  
Vol 91 (4) ◽  
pp. 1713-1722 ◽  
Author(s):  
Fadi Xu ◽  
Tongrong Zhou ◽  
Tonya Gibson ◽  
Donald T. Frazier

Electrical stimulation of the rostral fastigial nucleus (FNr) alters respiration via activation of local neurons. We hypothesized that this FNr-mediated respiratory response was dependent on the integrity of the nucleus gigantocellularis of the medulla (NGC). Electrical stimulation of the FNr in 15 anesthetized and tracheotomized spontaneously breathing rats significantly altered ventilation by 35.2 ± 11.0% ( P < 0.01) with the major effect being excitatory (78%). This respiratory response did not significantly differ from control after lesions of the NGC via bilateral microinjection of kainic or ibotenic acid (4.5 ± 1.9%; P > 0.05) but persisted in sham controls. Eight other rats, in which horseradish peroxidase (HRP) solution was previously microinjected into the left NGC, served as nonstimulation controls or were exposed to either 15-min repeated electrical stimulation of the right FNr or hypercapnia for 90 min. Histochemical and immunocytochemical data showed that the right FNr contained clustered HRP-labeled neurons, most of which were double labeled with c-Fos immunoreactivity in both electrically and CO2-stimulated rats. We conclude that the NGC receives monosynaptic FNr inputs and is required for fully expressing FNr-mediated respiratory responses.


1998 ◽  
Vol 79 (1) ◽  
pp. 474-477 ◽  
Author(s):  
Kurt D. Macdonald ◽  
Eva Fifkova ◽  
Michael S. Jones ◽  
Daniel S. Barth

MacDonald, Kurt D., Eva Fifkova, Michael S. Jones, and Daniel S. Barth. Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex. J. Neurophysiol. 79: 474–477, 1998. Electrical stimulation of the thalamic reticular nucleus (TRN; 0.5-s trains of 500-Hz 0.5-ms pulses at 5–10 μA) evokes focal oscillations of cortical electrical potentials in the gamma frequency band (∼35–55 Hz). These evoked oscillations are specific to either the somatosensory or auditory cortex and to subregions of the cortical receptotopic map, depending on what part of the TRN is stimulated. Focal stimulation of the internal capsule, however, evokes focal slow potentials, without gamma activity. Our results suggest that the TRN's role extends beyond that of general cortical arousal to include specific modality and submodality activation of the forebrain.


2012 ◽  
Vol 24 (9) ◽  
pp. 1483-1493 ◽  
Author(s):  
Senthil Thillainadesan ◽  
Wei Wen ◽  
Lin Zhuang ◽  
John Crawford ◽  
Nicole Kochan ◽  
...  

ABSTRACTBackground: Previous studies using diffusion tensor imaging (DTI) have observed microstructural abnormalities in white matter regions in both Alzheimer's disease and mild cognitive impairment (MCI). The aim of this work was to examine the abnormalities in white matter and subcortical regions of MCI and its subtypes in a large, community-dwelling older aged cohortMethods: A community-based sample of 396 individuals without dementia underwent medical assessment, neuropsychiatric testing, and neuroimaging. Of these, 158 subjects were classified as MCI and 238 as cognitively normal (controls) based on international MCI consensus criteria. Regional fractional anisotropy (FA) and mean diffusivity (MD) measures were calculated from the DTI and compared between groups. The false discovery rate correction was applied for multiple testing.Results: Subjects with MCI did not have significant differences in FA compared with controls after correction for multiple testing, but had increased MD in the right putamen, right anterior limb of the internal capsule, genu and splenium of the corpus callosum, right posterior cingulate gyrus, left superior frontal gyrus, and right and left corona radiata. When compared with controls, changes in left anterior cingulate, left superior frontal gyrus, and right corona radiata were associated with amnestic MCI (aMCI), whereas changes in the right putamen, right anterior limb of the internal capsule, and the right corona radiata were associated with non-amnestic MCI (naMCI). On logistic regression, the FA values in the left superior gyrus and MD values in the anterior cingulate distinguished aMCI from naMCI.Conclusions: MCI is associated with changes in white matter and subcortical regions as seen on DTI. Changes in some anterior brain regions distinguish aMCI from naMCI.


Sign in / Sign up

Export Citation Format

Share Document