scholarly journals Measurement of Benzodiazepine Receptor Number and Affinity in Humans Using Tracer Kinetic Modeling, Positron Emission Tomography, and [11C]Flumazenil

1993 ◽  
Vol 13 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Julie C. Price ◽  
Helen S. Mayberg ◽  
Robert F. Dannals ◽  
Alan A. Wilson ◽  
Hayden T. Ravert ◽  
...  

Kinetic methods were used to obtain regional estimates of benzodiazepine receptor concentration ( Bmax) and equilibrium dissociation constant ( Kd) from high and low specific activity (SA) [11C]flumazenil ([11C] Ro 15-1788) positron emission tomography studies of five normal volunteers. The high and low SA data were simultaneously fit to linear and nonlinear three-compartment models, respectively. An additional inhibition study (pretreatment with 0.15 mg/kg of flumazenil) was performed on one of the volunteers, which resulted in an average gray matter K1/ k2 estimate of 0.68 ± 0.08 ml/ml (linear three-compartment model, nine brain regions). The free fraction of flumazenil in plasma ( f1) was determined for each study (high SA f1: 0.50 ± 0.03; low SA f1: 0.48 ± 0.05). The free fraction in brain ( f2) was calculated using the inhibition K1/ k2 ratio and each volunteer's mean f1 value ( f2 across volunteers = 0.72 ± 0.03 ml/ml). Three methods (Methods I–III) were examined. Method I determined five kinetic parameters simultaneously [ K1, k2, k3 (= kon f2 Bmax), k4, and kon f2/SA] with no a priori constraints. An average kon value of 0.030 ± 0.003 n M−1 min−1 was estimated for receptor-rich regions using Method I. In Methods II and III, the kon f2/SA parameter was specifically constrained using the Method I value of kon and the volunteer's values of f2 and low SA (Ci/μmol). Four parameters were determined simultaneously using Method II. In Method III, K1/ k2 was fixed to the inhibition value and only three parameters were estimated. Method I provided the most variable results and convergence problems for regions with low receptor binding. Method II provided results that were less variable but very similar to the Method I results, without convergence problems. However, the K1/ k2 ratios obtained by Method II ranged from 1.07 in the occipital cortex to 0.61 in the thalamus. Fixing the K1/ k2 ratio in Method III provided a method that was physiologically consistent with the fixed value of f2 and resulted in parameters with considerably lower variability. The average Bmax values obtained using Method III were 100 ± 25 n M in the occipital cortex, 64 ±18 n M in the cerebellum, and 38 ± 5.5 n M in the thalamus; the average Kd was 8.9 ± 1.0 n M (five brain regions).

1991 ◽  
Vol 11 (2) ◽  
pp. 204-219 ◽  
Author(s):  
Bernard Sadzot ◽  
Julie C. Price ◽  
Helen S. Mayberg ◽  
Kenneth H. Douglass ◽  
Robert F. Dannals ◽  
...  

[11C]Diprenorphine, a weak partial opiate agonist, and positron emission tomography were used to obtain noninvasive regional estimates of opiate receptor concentration ( Bmax) and affinity ( Kd) in human brain. Different compartmental models and fitting strategies were compared statistically to establish the most reliable method of parameter estimation. Paired studies were performed in six normal subjects using high (769–5,920 Ci/mmol) and low (27–80 Ci/mmol) specific activity (SA) [11C]diprenorphine. Two subjects were studied a third time using high SA [11C]diprenorphine after a pretreatment with 1–1.5 mg/kg of the opiate antagonist naloxone. After the plasma radioactivity was corrected for metabolites, the brain data were analyzed using a three-compartment model and nonlinear least-squares curve fitting. Linear differential equations were used to describe the high SA (low receptor occupancy) kinetics. The k3/ k4 ratio varied from 1.0 ± 0.2 (occipital cortex) to 8.6 ± 1.6 (thalamus). Nonlinear differential equations were used to describe the low SA (high receptor occupancy) kinetics and the curve fits provided the kon f2 product. The measured free fraction of [11C]diprenorphine in plasma ( f1) was 0.30 ± 0.03, the average K1/ k2 ratio from the two naloxone studies was 1.1 ± 0.2, and the calculated free fraction of [11C]diprenorphine in the brain ( f2) was 0.3. Using the paired SA studies, the estimated kinetic parameters, and f2, separate estimates of Bmax and Kd were obtained. Bmax varied from 2.3 ± 0.5 (occipital cortex) to 20.6 ± 7.3 (cingulate cortex) n M. The average Kd (eight brain regions) was 0.85 ± 0.17 n M.


2002 ◽  
Vol 22 (7) ◽  
pp. 878-889 ◽  
Author(s):  
Anne Lingford-Hughes ◽  
Susan P. Hume ◽  
Adrian Feeney ◽  
Ella Hirani ◽  
Safiye Osman ◽  
...  

There is evidence of marked variation in the brain distribution of specific subtypes of the GABA-benzodiazepine receptor and that particular subtypes mediate different functions. The α5-containing subtype is highly expressed in the hippocampus, and selective α5 inverse agonists (which decrease tonic GABA inhibition) are being developed as potential memory-enhancing agents. Evidence for such receptor localization and specialization in humans in vivo is lacking because the widely used probes for imaging the GABA-benzodiazepine receptors, [11C]flumazenil and [123I]iomazenil, appear to reflect binding to the α1 subtype, based on its distribution and affinity of flumazenil for this subtype. The authors characterized for positron emission tomography (PET) a radioligand from Ro15 4513, the binding of which has a marked limbic distribution in the rat and human brain in vivo. Competition studies in vivo in the rat revealed that radiolabeled Ro15 4513 uptake was reduced to nonspecific levels only by drugs that have affinity for the α5 subtype (flunitrazepam, RY80, Ro15 4513, L655,708), but not by the α1 selective agonist, zolpidem. Quantification of [11C]Ro15 4513 PET was performed in humans using a metabolite-corrected plasma input function. [11C]Ro15 4513 uptake was relatively greater in limbic areas compared with [11C]flumazenil, but lower in the occipital cortex and cerebellum. The authors conclude that [11C]Ro15 4513 PET labels in vivo the GABA-benzodiazepine receptor containing the α5 subtype in limbic structures and can be used to further explore the functional role of this subtype in humans.


2019 ◽  
Vol 40 (4) ◽  
pp. 860-874
Author(s):  
Ansel T Hillmer ◽  
Richard E Carson

In some positron emission tomography (PET) studies, a reversibly binding radioligand is administered as a constant infusion to establish true equilibrium for quantification. This approach reduces scanning time and simplifies data analysis, but assumes similar behavior of the radioligand in plasma across the study population to establish true equilibrium in all subjects. Bias in outcome measurements can result if this assumption is not met. This work developed and validated a correction that reduces bias in total distribution volume ( VT) estimates when true equilibrium is not present. This correction, termed tissue clearance correction (TCC), took the form [Formula: see text], where β is the radioligand clearance rate in tissue, γ is a radiotracer-specific constant, and VT(A) is the apparent VT. Simulations characterized the robustness of TCC across imperfect values of γ and β and demonstrated reduction to false positive rates. This approach was validated with human infusion data for three radiotracers: [18F]FPEB, (−)-[18F]flubatine, and [11C]UCB-J. TCC reduced bias in VT estimates for all radiotracers and significantly reduced intersubject variance in VT for [18F]FPEB data in some brain regions. Thus, TCC improves quantification of data acquired from PET infusion studies.


2005 ◽  
Vol 25 (4) ◽  
pp. 520-526 ◽  
Author(s):  
Mary Louise Harris ◽  
Peter Julyan ◽  
Bhavna Kulkarni ◽  
David Gow ◽  
Anthony Hobson ◽  
...  

We have previously shown that labelled water positron emission tomography (H215O PET) can be used to identify regional cerebral blood flow (rCBF) changes in the human brain during volitional swallowing. (18F) fluorodeoxyglucose (FDG PET), by comparison, uses a glucose analogue to quantitatively measure regional cerebral glucose metabolism (rCMRglc) rather than rCBF. The main advantage of FDG PET is improved spatial resolution, and because of its pharmacodynamic properties, activation can be performed external to the scanner, allowing subjects to assume more physiologic positions. We therefore conducted a study of the brain's metabolic response while swallowing in the erect seated position, using FDG PET. Eight healthy male volunteers were studied with a randomised 2 scan paradigm of rest or water swallowing at 20-second intervals for 30 minutes. Data were analysed with SPM99 using multisubject conditions and covariates design. During swallowing, analysis identified increased rCMRglc ( P<0.01) in the following areas: left sensorimotor cortex, cerebellum, thalamus, precuneus, anterior insula, left and right lateral postcentral gyrus, and left and right occipital cortex. Decreased rCMRglc were also seen in the right premotor cortex, right and left sensory and motor association cortices, left posterior insula and left cerebellum. Thus, FDG PET can be applied to measure the brain metabolic activity associated with volitional swallowing and has the advantage of normal task engagement. This has implications for future activation studies in patients, especially those suffering swallowing problems after brain injury.


2017 ◽  
Vol 29 (1) ◽  
pp. 122
Author(s):  
H. J. Oh ◽  
J. Moon ◽  
G. A. Kim ◽  
S. Lee ◽  
S. H. Paek ◽  
...  

Due to similarities between human and porcine, pigs have been proposed as an excellent experimental animal for human medical research. Especially in paediatric brain research, piglets share similarities with human infants in the extent of peak brain growth at the time of birth and the growth pattern of brain. Thus, these findings have supported the wider use of pigs rather than rodents in neuroscience research. Previously, we reported the production of porcine model of Parkinson's disease (PD) by nuclear transfer using donor cell that had been stably infected with lentivirus containing the human α-synuclein gene. The purpose of this study was to determine the alternation of brain metabolism and dopaminergic neuron destruction using noninvasive method in a 2-yr-old PD model and a control pig. The positron emission tomography (PET) scan was done using Biograph TruePoint40 with a TrueV (Siemens, Munich, Germany). The [18F]N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) was administrated via the ear vein. Static images of the brain for 15 min were acquired from 2 h after injection. The 18F-fluorodeoxy-D-glucose PET (18F-FDG PET) images of the brain were obtained for 15 min at 45 min post-injection. Computed tomography (CT) scan and magnetic resonance imaging (MRI) were performed at the same location of the brain. In both MRI and CT images, there was no difference in brain regions between PD model and control pigs. However, administration of [18F]FP-CIT was markedly decreased in the bilateral putamen of the PD model pig compared with the control pigs. Moreover, [18F]FP-CIT administration was asymmetrical in the PD model pig but it was symmetrical in control pigs. Regional brain metabolism was also assessed and there was no significant difference in cortical metabolism of PD model and control pigs. We demonstrated that PET imaging could provide a foundation for translational Parkinson neuroimaging in transgenic pigs. In the present study, a 2-yr-old PD model pig showed dopaminergic neuron destruction in brain regions. Therefore, PD model pig expressing human α-synuclein gene would be an efficient model for human PD patients. This study was supported by Korea IPET (#311011–05–5-SB010), Research Institute for Veterinary Science, TS Corporation and the BK21 plus program.


2011 ◽  
Vol 31 (8) ◽  
pp. 1807-1816 ◽  
Author(s):  
Pablo M Rusjan ◽  
Alan A Wilson ◽  
Peter M Bloomfield ◽  
Irina Vitcu ◽  
Jeffrey H Meyer ◽  
...  

This article describes the kinetic modeling of [18F]-FEPPA binding to translocator protein 18 kDa in the human brain using high-resolution research tomograph (HRRT) positron emission tomography. Positron emission tomography scans were performed in 12 healthy volunteers for 180 minutes. A two-tissue compartment model (2-CM) provided, with no exception, better fits to the data than a one-tissue model. Estimates of total distribution volume ( VT), specific distribution volume ( VS), and binding potential ( BPND) demonstrated very good identifiability (based on coefficient of variation ( COV)) for all the regions of interest (ROIs) in the gray matter ( COV VT < 7%, COV VS < 8%, COV BPND < 11%). Reduction of the length of the scan to 2 hours is feasible as VS and VT showed only a small bias (6% and 7.5%, respectively). Monte Carlo simulations showed that, even under conditions of a 500% increase in specific binding, the identifiability of VT and VS was still very good with COV<10%, across high-uptake ROIs. The excellent identifiability of VT values obtained from an unconstrained 2-CM with data from a 2-hour scan support the use of VT as an appropriate and feasible outcome measure for [18F]-FEPPA.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Seiki Tajima ◽  
Shigeyuki Yamamoto ◽  
Masaaki Tanaka ◽  
Yosky Kataoka ◽  
Masao Iwase ◽  
...  

Fatigue is an indispensable bioalarm to avoid exhaustive state caused by overwork or stresses. It is necessary to elucidate the neural mechanism of fatigue sensation for managing fatigue properly. We performedH2O  15positron emission tomography scans to indicate neural activations while subjects were performing 35-min fatigue-inducing task trials twice. During the positron emission tomography experiment, subjects performed advanced trail-making tests, touching the target circles in sequence located on the display of a touch-panel screen. In order to identify the brain regions associated with fatigue sensation, correlation analysis was performed using statistical parametric mapping method. The brain region exhibiting a positive correlation in activity with subjective sensation of fatigue, measured immediately after each positron emission tomography scan, was located in medial orbitofrontal cortex (Brodmann's area 10/11). Hence, the medial orbitofrontal cortex is a brain region associated with mental fatigue sensation. Our findings provide a new perspective on the neural basis of fatigue.


Sign in / Sign up

Export Citation Format

Share Document