scholarly journals Local Cerebral Glucose Utilization and Cytoskeletal Proteolysis as Indices of Evolving Focal Ischemic Injury in Core and Penumbra

1995 ◽  
Vol 15 (3) ◽  
pp. 398-408 ◽  
Author(s):  
Hiroshi Yao ◽  
Myron D. Ginsberg ◽  
David D. Eveleth ◽  
Joseph C. LaManna ◽  
Brant D. Watson ◽  
...  

To ascertain the tempo of progression to irreversible injury in focal ischemia, we subjected halothaneanesthetized Sprague–Dawley rats to photochemically induced distal middle cerebral artery occlusion (dMCAO) combined with permanent ipsilateral and 1 h contralateral common carotid artery occlusions. Head temperature was maintained at 36°C. At times centered at either 1.5 or 3 h post-dMCAO, the rate of local glucose metabolism (lCMRgl) was measured by 2-deoxyglucose autoradiography, and cytoskeletal proteolysis was assessed regionally by an immunoblotting procedure to detect spectrin breakdown products. At 1.5 h (n = 5), the cortical ischemic core was already severely hypometabolic (lCMRgl 15.5 ± 10.8 μmol 100 g−1 min−1, mean ± SD), whereas the cortical penumbral zone was hypermetabolic (69.0 ± 9.7). (The lumped constant was verified to be unchanged by methylglucose studies.) Neutral red pH studies at this time point showed that both the core and penumbral zones were equally acidotic. By 3 h post-dMCAO (n = 6), lCMRgl in the penumbral zone had fallen to low levels (15.4 ± 2.2 μmol 100 g−1 min−1) equal to those of the ischemic core (16.7 ± 4.5). Correspondingly, spectrin breakdown in the ischemic core was advanced at both 2 and 3.5 h post-dMCAO (36 ± 18% and 33 ± 18% of total spectrin, respectively), whereas in the penumbral zone spectrin breakdown was less extensive and more highly variable at both times (22 ± 23% and 29 ± 16%). We conclude that irreversible deterioration of the ischemic core, as evidenced by the onset of local cytoskeletal proteolysis, begins within 2 h of middle cerebral artery occlusion. In the ischemic penumbra, the transition from glucose hyper- to hypometabolism occurs by 3.5 h and is associated with a milder and more variable degree of spectrin breakdown.

2007 ◽  
Vol 418 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Hiroaki Matsumoto ◽  
Yoshiaki Kumon ◽  
Hideaki Watanabe ◽  
Takanori Ohnishi ◽  
Hisaaki Takahashi ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shu-Jen Chang ◽  
Juin-Hong Cherng ◽  
Ding-Han Wang ◽  
Shu-Ping Yu ◽  
Nien-Hsien Liou ◽  
...  

Objective.Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model.Materials and Methods.Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior.Results.Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group.Conclusion.The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain.


1997 ◽  
Vol 17 (12) ◽  
pp. 1266-1280 ◽  
Author(s):  
Ludmila Belayev ◽  
Weizhao Zhao ◽  
Raul Busto ◽  
Myron D. Ginsberg

Using autoradiographic image-averaging strategies, we studied the relationship between local glucose utilization (LCMRglc) and blood flow (LCBF) in a highly reproducible model of transient (2-hour) middle cerebral artery occlusion (MCAO) produced in Sprague-Dawley rats by insertion of an intraluminal suture coated with poly-L-lysine. Neurobehavioral examination at 60 minutes after occlusion substantiated a high-grade deficit in all animals. In two subgroups, LCBF was measured with 14C-iodoantipyrine at either 1.5 hours of MCAO, or at 1 hour of recirculation after suture removal. In two other matched subgroups, LCMRglc was measured with 14C-2-deoxyglucose at 1.5 to 2.25 hours of MCAO, and at 0.75 to 1.5 hours of recirculation after 2 hours of MCAO. Average image data sets were generated for LCBF, LCMRglc, and the LCMRglc/LCBF ratio for each study time. Middle cerebral artery occlusion for 2 hours induced graded LCBF decrements affecting ipsilateral cortical and basal ganglionic regions. After 1 hour of recirculation, LCBF in previously ischemic neocortical regions increased by 40% to 200% above ischemic levels, but remained depressed, on average, at about 40% of control. By contrast, frank hyperemia was noted in the previously ischemic caudoputamen. Mean cortical LCBF values during MCAO correlated highly with their respective LCBF values after 1 hour of recirculation (R = 0.93), suggesting that postischemic LCBF recovery is related to the depth of ischemia. Despite focal ischemia, LCMRglc during ~2 hours of MCAO was preserved, on average, at near-normal levels; but following ~1 h of recirculation, LCMRglc became markedly depressed (on average, 55% of control in previously densely ischemic cortical regions). Regression analysis indicated that this depressed glucose utilization was determined largely by the intensity of antecedent ischemia. By pixel analysis, the ischemic core (defined as LCBF 0% to 20% of control) comprised 33% of the ischemic hemisphere, and the penumbra (LCBF 20% to 40%) accounted for 26%. The penumbra was concentrated at the coronal poles of the ischemic lesion and formed a thin shell around the central ischemic core. During 2 hours of MCAO, the LCMRglc/LCBF ratio within the ischemic penumbra was increased four-fold above normal (average, 179 umol/100 mL). In marked contrast, after ~1 h recirculation, this uncoupling had almost completely subsided. The companion study ( Zhao et al., 1997 ) further analyzes these findings in relation to patterns of infarctive histopathology.


2021 ◽  
pp. neurintsurg-2021-018239
Author(s):  
Gregory A Christoforidis ◽  
Niloufar Saadat ◽  
Mira Liu ◽  
Yong Ik Jeong ◽  
Steven Roth ◽  
...  

BackgroundSanguinate, a bovine PEGylated carboxyhemoglobin-based oxygen carrier with vasodilatory, oncotic and anti-inflammatory properties designed to release oxygen in hypoxic tissue, was tested to determine if it improves infarct volume, collateral recruitment and blood flow to the ischemic core in hyperacute middle cerebral artery occlusion (MCAO).MethodsUnder an IACUC approved protocol, 14 mongrel dogs underwent endovascular permanent MCAO. Seven received Sanguinate (8 mL/kg) intravenously over 10 min starting 30 min following MCAO and seven received a similar volume of normal saline. Relative cerebral blood flow (rCBF) was assessed using neutron-activated microspheres prior to MCAO, 30 min following MCAO and 30 min following intervention. Pial collateral recruitment was scored and measured by arterial arrival time (AAT) immediately prior to post-MCAO microsphere injection. Diffusion-weighted 3T MRI was used to assess infarct volume approximately 2 hours after MCAO.ResultsMean infarct volumes for control and Sanguinate-treated subjects were 4739 mm3 and 2585 mm3 (p=0.0443; r2=0.687), respectively. Following intervention, rCBF values were 0.340 for controls and 0.715 in the Sanguinate group (r2=0.536; p=0.0064). Pial collateral scores improved only in Sanguinate-treated subjects and AAT decreased by a mean of 0.314 s in treated subjects and increased by a mean of 0.438 s in controls (p<0.0276).ConclusionPreliminary results indicate that topload bolus administration of Sanguinate in hyperacute ischemic stroke significantly improves infarct volume, pial collateral recruitment and CBF in experimental MCAO immediately following its administration.


2008 ◽  
Vol 29 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Hiroshi Yao ◽  
Narihiko Yoshii ◽  
Toshiaki Akira ◽  
Tatsuo Nakahara

To explore the effects of reperfusion on evolution of focal ischemic injury, spontaneously hypertensive male rats were subjected to photothrombotic distal middle cerebral artery occlusion (MCAO) with or without YAG laser-induced reperfusion. The volume of fodrin breakdown zone, water content, and brain tissue levels of sodium (Na+) and potassium (K+) were measured in the ischemic core and penumbra. Reperfusion attenuated fodrin breakdown, and the volume containing fodrin breakdown product at 3 h after reperfusion (5 h after MCAO) (30±7 mm3) was significantly smaller than the 42±3 mm3 of the permanent occlusion group. After 3 to 6 h of ischemia, Na+ increased, and K+ decreased in the ischemic core. Reperfusion after 2 h of MCA occlusion did not mitigate the ischemia-induced changes in brain tissue electrolytes and water content at 3 to 6 h of ischemia. Even in reperfusion after comparatively long periods of occlusion where brain infarction size, assessed 3 days after MCAO, was not significantly reduced by reperfusion, and the precipitating indicators of the ischemic core (Na+, K+, water content) did not improve, temporary improvement or a delay in progression of ischemic injury was discernible in the penumbra. These results indicate the possibility that treatment with reperfusion is permissive to the effects of neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document