scholarly journals Brief Exposure to Hyperoxia Depletes the Glial Progenitor Pool and Impairs Functional Recovery after Hypoxic-Ischemic Brain Injury

2008 ◽  
Vol 28 (7) ◽  
pp. 1294-1306 ◽  
Author(s):  
Joshua D Koch ◽  
Darryl K Miles ◽  
Jennifer A Gilley ◽  
Cui-Ping Yang ◽  
Steven G Kernie

Patterns of hypoxic-ischemic brain injury in infants and children suggest vulnerability in regions of white matter development, and injured patients develop defects in myelination resulting in cerebral palsy and motor deficits. Reperfusion exacerbates the oxidative stress that occurs after such injuries and may impair recovery. Resuscitation after hypoxic-ischemic injury is routinely performed using 100% oxygen, and this practice may increase the oxidative stress that occurs during reperfusion and further damage an already compromised brain. We show that brief exposure (30 mins) to 100% oxygen during reperfusion worsens the histologic injury in young mice after unilateral brain hypoxia—ischemia, causes an accumulation of the oxidative metabolite nitrotyrosine, and depletes preoligodendrocyte glial progenitors present in the cortex. This damage can be reversed with administration of the antioxidant ebselen, a glutathione peroxidase mimetic. Moreover, mice recovered in 100% oxygen have a more disrupted pattern of myelination and develop a static motor deficit that mimics cerebral palsy and manifests itself by significantly worse performance on wire hang and rotorod motor testing. We conclude that exposure to 100% oxygen during reperfusion after hypoxic-ischemic brain injury increases secondary neural injury, depletes developing glial progenitors, interferes with myelination, and ultimately impairs functional recovery.

2012 ◽  
Vol 140 (1-2) ◽  
pp. 35-41 ◽  
Author(s):  
Brankica Vasiljevic ◽  
Svjetlana Maglajlic-Djukic ◽  
Miroslava Gojnic ◽  
Sanja Stankovic

Introduction. The pathogenesis of perinatal hypoxic-ischemic brain damage is highly complex. Objective. The aim of this study was to assess the role of oxidative stress in hypoxic-ischemic brain injury and subsequent abnormal neurological outcome in infants with perinatal hypoxic-ischemic encephalopathy (HIE). We estimated perinatal oxidative brain damage measuring activity of glutathione peroxidase (GPX) in cerebrospinal fluid (CSF) as an indirect biomarker of free radical production during cerebral hypoxia-ischemia in correlation with the level of intracellular enzyme neuron specific enolase (NSE) in CSF as a biomarker of extend of brain injury. Methods. Ninety neonates (>32 GA) with perinatal HIE were enrolled prospectively. HIE was categorized into three stages according Sarnat and Sarnat clinical scoring system and changes seen on amplitude integrated EEG. CSF for GPX analysis and NSE analysis was taken in the first 72 hours of life. Neurodevelopment outcome was assessed at 12 months of corrected gestational age. Results. GPX activity in CSF was in good relation with clinical stage of HIE (p<0.0001) and GA (p<0.0001) and significantly corresponded with subsequent neurodevelopment outcome (p<0.001). GPX activity in CSF showed a strong correlation with NSE levels in CSF (p<0.001) as the biomarker of extent of brain injury. Conclusion. Our results suggest that oxidative stress might be important contributing factor in perinatal hypoxic-ischemic brain damage, particularly in preterm neonates.


Author(s):  
Senem Alkan Ozdemir ◽  
Nail Ozdemir ◽  
Ozgur Aksan ◽  
Burak Kınalı ◽  
Gökçen Bilici Güler ◽  
...  

2021 ◽  
Author(s):  
Changchang Fu ◽  
Yihui Zheng ◽  
Kun Lin ◽  
Hongzeng Wang ◽  
Tingting Chen ◽  
...  

Neonatal hypoxic-ischemic (HI) brain injury can lead to mortality and severe long-term disabilities including cerebral palsy and brain injury.


Sign in / Sign up

Export Citation Format

Share Document