scholarly journals Hypoxia-Inducible Factor 1 is Essential for Spontaneous Recovery from Traumatic Brain Injury and is a Key Mediator of Heat Acclimation Induced Neuroprotection

2013 ◽  
Vol 33 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Gali Umschweif ◽  
Alexander G Alexandrovich ◽  
Victoria Trembovler ◽  
Michal Horowitz ◽  
Esther Shohami

Heat acclimation (HA), a well-established preconditioning model, confers neuroprotection in rodent models of traumatic brain injury (TBI). It increases neuroprotective factors, among them is hypoxia-inducible factor 1α (HIF-1α), which is important in the response to postinjury ischemia. However, little is known about the role of HIF-1α in TBI and its contribution to the establishment of the HA protecting phenotype. Therefore, we aimed to explore HIF-1α role in TBI defense mechanisms as well as in HA-induced neuroprotection. Acriflavine was used to inhibit HIF-1 in injured normothermic (NT) or HA mice. After TBI, we evaluated motor function recovery, lesion volume, edema formation, and body temperature as well as HIF-1 downstream transcription targets, such as glucose transporter 1 (GLUT1), vascular endothelial growth factor, and aquaporin 4. We found that HIF-1 inhibition resulted in deterioration of motor function, increased lesion volume, hypothermia, and reduced edema formation. All these parameters were significantly different in the HA mice. Western blot analysis and enzyme-linked immunosorbent assay showed reduced levels of all HIF-1 downstream targets in HA mice, however, only GLUT1 was downregulated in NT mice. We conclude that HIF-1 is a key mediator in both spontaneous recovery and HA-induced neuroprotection after TBI.

2012 ◽  
Vol 33 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Nicole A Terpolilli ◽  
Seong-Woong Kim ◽  
Serge C Thal ◽  
Wolfgang M Kuebler ◽  
Nikolaus Plesnila

Ischemia, especially pericontusional ischemia, is one of the leading causes of secondary brain damage after traumatic brain injury (TBI). So far efforts to improve cerebral blood flow (CBF) after TBI were not successful because of various reasons. We previously showed that nitric oxide (NO) applied by inhalation after experimental ischemic stroke is transported to the brain and induces vasodilatation in hypoxic brain regions, thus improving regional ischemia, thereby improving brain damage and neurological outcome. As regional ischemia in the traumatic penumbra is a key mechanism determining secondary posttraumatic brain damage, the aim of the current study was to evaluate the effect of NO inhalation after experimental TBI. NO inhalation significantly improved CBF and reduced intracranial pressure after TBI in male C57 Bl/6 mice. Long-term application (24 hours NO inhalation) resulted in reduced lesion volume, reduced brain edema formation and less blood–brain barrier disruption, as well as improved neurological function. No adverse effects, e.g., on cerebral auto-regulation, systemic blood pressure, or oxidative damage were observed. NO inhalation might therefore be a safe and effective treatment option for TBI patients.


2017 ◽  
Vol 38 (10) ◽  
pp. 1818-1827 ◽  
Author(s):  
Raghavendar Chandran ◽  
TaeHee Kim ◽  
Suresh L Mehta ◽  
Eshwar Udho ◽  
Vishal Chanana ◽  
...  

Uncontrolled oxidative stress contributes to the secondary neuronal death that promotes long-term neurological dysfunction following traumatic brain injury (TBI). Surprisingly, both NADPH oxidase 2 (NOX2) that increases and transcription factor Nrf2 that decreases reactive oxygen species (ROS) are induced after TBI. As the post-injury functional outcome depends on the balance of these opposing molecular pathways, we evaluated the effect of TBI on the motor and cognitive deficits and cortical contusion volume in NOX2 and Nrf2 knockout mice. Genetic deletion of NOX2 improved, while Nrf2 worsened the post-TBI motor function recovery and lesion volume indicating that decreasing ROS levels might be beneficial after TBI. Treatment with either apocynin (NOX2 inhibitor) or TBHQ (Nrf2 activator) alone significantly improved the motor function after TBI, but had no effect on the lesion volume, compared to vehicle control. Whereas, the combo therapy (apocynin + TBHQ) given at either 5 min/24 h or 2 h/24 h improved motor and cognitive function and decreased cortical contusion volume compared to vehicle group. Thus, both the generation and disposal of ROS are important modulators of oxidative stress, and a combo therapy that prevents ROS formation and potentiates ROS disposal concurrently is efficacious after TBI.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Evan Wicker ◽  
Leah Benton ◽  
Kershina George ◽  
William Furlow ◽  
Sonia Villapol

Traumatic brain injury (TBI) causes a wide variety of neuroinflammatory events. These neuroinflammatory events depend, to a greater extent, on the severity of the damage. Our previous studies have shown that the liver produces serum amyloid A (SAA) at high levels in the initial hours after controlled cortical impact (CCI) injury in mice. Clinical studies have reported detectable SAA in the plasma of brain injury patients, but it is not clear if SAA levels depend on TBI severity. To evaluate this question, we performed a mild to severe CCI injury in wild-type mice. We collected blood samples and brains at 1, 3, and 7 days after injury for protein detection by western blotting, enzyme-linked immunosorbent assay, or immunohistochemical analysis. Our results showed that severe CCI injury compared to mild CCI injury or sham mice caused an increased neuronal death, larger lesion volume, increased microglia/macrophage density, and augmented neutrophil infiltration. Furthermore, we found that the serum levels of SAA protein ascended in the blood in correlation with high neuroinflammatory and neurodegenerative responses. Altogether, these results suggest that serum SAA may be a novel neuroinflammation-based, and severity-dependent, biomarker for acute TBI.


2009 ◽  
Vol 30 (3) ◽  
pp. 616-627 ◽  
Author(s):  
Gali Umschwief ◽  
Na'ama A Shein ◽  
Alexander G Alexandrovich ◽  
Victoria Trembovler ◽  
Michal Horowitz ◽  
...  

Heat acclimation (HA) offers functional neuroprotection in mice after traumatic brain injury (TBI). This study further characterizes endogenous neuroprotection acquired by HA (34±1°C, 30 d) after TBI. We establish here the ability of HA to induce sustained functional benefits and to reduce activation of apoptotic pathways. Neurobehavioral recovery, assessed by the Neurological Severity Score, was greater in HA mice up to 8 days after injury as compared with normothermic controls ( P<0.05) and lesion volume was also smaller in the HA group ( P<0.05). Reduced apoptotic cell death in HA mice was confirmed using caspase-3 activity measurements and immunohistochemistry. To investigate the underlying molecular pathways, expression levels of intrinsic apoptotic pathway-related proteins were examined. HA mice displayed higher mitochondrial levels of antiapoptotic Bcl-xL, accompanied by lower proapoptotic Bad levels and decreased cytochrome c release, suggesting a higher apoptotic threshold. Taken together with our previous reports, indicating increased Akt phosphorylation and antioxidative capacity, alongside with reduced tumor necrosis α levels after TBI in HA animals, the current results support the involvement of an antiapoptotic effect in HA-induced neuroprotection. Current results warrant further study as TBI-induced apoptosis may persist over weeks after injury, possibly providing a target for belated therapeutic intervention.


ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141984709 ◽  
Author(s):  
Aleksandra Ichkova ◽  
Andrew M. Fukuda ◽  
Nina Nishiyama ◽  
Germaine Paris ◽  
Andre Obenaus ◽  
...  

Juvenile traumatic brain injury (jTBI) is the leading cause of death and disability for children and adolescents worldwide, but there are no pharmacological treatments available. Aquaporin 4 (AQP4), an astrocytic perivascular protein, is increased after jTBI, and inhibition of its expression with small interference RNA mitigates edema formation and reduces the number of reactive astrocytes after jTBI. Due to the physical proximity of AQP4 and gap junctions, coregulation of AQP4 and connexin 43 (Cx43) expressions, and the possibility of water diffusion via gap junctions, we decided to address the potential role of astrocytic gap junctions in jTBI pathophysiology. We evaluated the role of Cx43 in the spread of the secondary injuries via the astrocyte network, such as edema formation associated with blood–brain barrier dysfunctions, astrogliosis, and behavioral outcome. We observed that Cx43 was altered after jTBI with increased expression in the perilesional cortex and in the hippocampus at several days post injury. In a second set of experiments, cortical injection of small interference RNA against Cx43 decreased Cx43 protein expression, improved motor function recovery, and decreased astrogliosis but did not result in differences in edema formation as measured via T2-weighted imaging or diffusion-weighted imaging at 1 day or 3 days. Based on our findings, we can speculate that while decreasing Cx43 has beneficial roles, it likely does not contribute to the spread of edema early after jTBI.


Author(s):  
Xiguang Sang ◽  
Zhiyong Wang ◽  
Tao Qin ◽  
Yonggang Li

Background Compelling evidence indicate that traumatic brain injury is highly related to accelerated bone fracture repair, but the underlying mechanism still remains elusive. Fracture repair process relies greatly on the formation of new blood vessels in fracture site, and angiogenic factors have been confirmed to be essential for the initiation and maintenance of the fracture healing. Hypoxia-inducible factor-1α was demonstrated to be a critical regulator of angiogenic–osteogenic coupling during bone development and regeneration. The aim of the present study was to investigate the local and circulating concentrations of hypoxia-inducible factor-1α in patients with long-bone fractures and concomitant traumatic brain injury and to determine the potential role of hypoxia-inducible factor-1α in fracture healing. Methods Twenty-five patients with a long-bone fracture and concomitant traumatic brain injury (FT group) and 33 without a brain injury (Fr group) were enrolled in this study. Healthy subjects donated serum samples as control. Serum samples were collected over a period of six months, following a standardized time schedule. Hypoxia-inducible factor-1α concentrations were measured in fracture haematoma and serum of patients in both groups using enzyme-linked immunosorbent assay. Results Patients in FT group had a short time to union. Serum hypoxia-inducible factor-1α concentrations elevated in the early healing period and reached the maximum level during intramembranous bone formation phase in both groups. Thereafter, it decreased continuously and approached to the minimum levels until the end of the observation period. Serum hypoxia-inducible factor-1α concentrations in both groups were significantly higher compared with controls and hypoxia-inducible factor-1α concentrations in both serum and fracture haematoma were higher in FT group than that in Fr group. Fracture haematoma contained significantly higher hypoxia-inducible factor-1α concentrations compared with hypoxia-inducible factor-1α concentrations in serum. Serum hypoxia-inducible factor-1α concentrations had a positive correlation with hypoxia-inducible factor-1α concentrations in fracture haematoma in patients with fractures. Conclusions These findings suggest the local and systemic involvement of hypoxia-inducible factor-1α in fracture healing and the accelerated fracture repair in patients with traumatic brain injury might be associated with elevated hypoxia-inducible factor-1α concentrations in fracture haematoma and serum.


2014 ◽  
Vol 34 (8) ◽  
pp. 1381-1390 ◽  
Author(s):  
Gali Umschweif ◽  
Dalia Shabashov ◽  
Alexander G Alexandrovich ◽  
Victoria Trembovler ◽  
Michal Horowitz ◽  
...  

Long-term exposure of mice to mild heat (34°C ± 1°C) confers neuroprotection against traumatic brain injury (TBI); however, the underling mechanisms are not fully understood. Heat acclimation (HA) increases hypothalamic angiotensin II receptor type 2 (AT2) expression and hypothalamic neurogenesis. Accumulating data suggest that activation of the brain AT2 receptor confers protection against several types of brain pathologies, including ischemia, a hallmark of the secondary injury occurring following TBI. As AT2 activates the same pro-survival pathways involved in HA-mediated neuroprotection (e.g., Akt phosphorylation, hypoxia-inducible factor 1α (HIF-1α), and brain-derived neurotrophic factor (BDNF)), we examined the role of AT2 in HA-mediated neuroprotection after TBI. Using an AT2-specific antagonist PD123319, we found that the improvements in motor and cognitive recovery as well as reduced lesion volume and neurogenesis seen in HA mice were all diminished by AT2 inhibition, whereas no significant alternations were observed in control mice. We also found that nerve growth factor/tropomyosin-related kinase receptor A (TrkA), BDNF/TrkB, and HIF-1α pathways are upregulated by HA and inhibited on PD123319 administration, suggesting that these pathways play a role in AT2 signaling in HA mice. In conclusion, AT2 is involved in HA-mediated neuroprotection, and AT2 activation may be protective and should be considered a novel drug target in the treatment of TBI patients.


Sign in / Sign up

Export Citation Format

Share Document