scholarly journals Serum Amyloid A Protein as a Potential Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Evan Wicker ◽  
Leah Benton ◽  
Kershina George ◽  
William Furlow ◽  
Sonia Villapol

Traumatic brain injury (TBI) causes a wide variety of neuroinflammatory events. These neuroinflammatory events depend, to a greater extent, on the severity of the damage. Our previous studies have shown that the liver produces serum amyloid A (SAA) at high levels in the initial hours after controlled cortical impact (CCI) injury in mice. Clinical studies have reported detectable SAA in the plasma of brain injury patients, but it is not clear if SAA levels depend on TBI severity. To evaluate this question, we performed a mild to severe CCI injury in wild-type mice. We collected blood samples and brains at 1, 3, and 7 days after injury for protein detection by western blotting, enzyme-linked immunosorbent assay, or immunohistochemical analysis. Our results showed that severe CCI injury compared to mild CCI injury or sham mice caused an increased neuronal death, larger lesion volume, increased microglia/macrophage density, and augmented neutrophil infiltration. Furthermore, we found that the serum levels of SAA protein ascended in the blood in correlation with high neuroinflammatory and neurodegenerative responses. Altogether, these results suggest that serum SAA may be a novel neuroinflammation-based, and severity-dependent, biomarker for acute TBI.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuchen He ◽  
Changcheng Ma ◽  
Jia Xing ◽  
Shiyue Wang ◽  
Chao Ji ◽  
...  

Abstract Background Acute aortic dissection (AAD) is a life-threatening disorder in vascular surgery with a high early mortality. Serum amyloid A (SAA) is a kind of acute-phase protein with a rapid diagnostic value in other diseases. However, the researches on the performance of SAA for the diagnosis of AAD is still lacking. This retrospective study aimed to evaluate the SAA levels and further explore its potential diagnostic role in AAD patients. Methods SAA levels were measured by enzyme-linked immunosorbent assay (ELISA) in 63 controls and 87 AAD patients. Laboratory examinations were also performed. And relative clinical information was collected from participants included in this study. Results SAA levels were significantly higher in AAD patients than those in healthy controls. SAA levels were independently associated with the risk of AAD. There was a positive significant correlation between SAA and C reactive protein (R = 0.442, and P = 0.001). Based on receiver-operating characteristic (ROC) analysis, the area under the curve (AUC) of SAA for the diagnosis of AAD were 0.942 with optimal cut-off points of 0.427 mg/L. For in-hospital mortality, the AUC of SAA were 0.732 with optimal cut-off points of 0.500 mg/L. According to logistic regression analysis, higher SAA levels represent a higher risk of in-hospital mortality (OR = 1.25; 95%CI: 1.07–1.47; P = 0.005). Conclusion Our findings demonstrated that SAA levels were significantly enhanced in AAD. SAA was closely correlated with inflammatory parameters and coagulation-related parameters in AAD. Furthermore, SAA could be a potential bio-marker for identifying AAD in the early diagnosis. Finally, SAA > 5.0 mg/L are independently related to AAD in-hospital mortality.


Author(s):  
Ying Zhang ◽  
Donglian Wang ◽  
Minjie Lin ◽  
Tong Sun ◽  
Jiaxi Chen ◽  
...  

Abstract Background: Serum Amyloid A (SAA) is an acute-phase reactant downstream of the pro-inflammatory cytokines released during virus infection. However, the role of this inflammatory marker in SARA-CoV-2 infection is yet to be elucidated. Here, we explored the potential use of SAA in serum as a biomarker for monitoring the clinical course of COVID-19 patients.Methods: The subjects included 95 COVID-19 patients discharged from the hospital with acute and / or convalescent phases data, among them 69 patients had paired data. Mann-Whitney U statistics and Wilcoxon signed-rank test were used to compare SAA level in the acute and convalescent phases. A subgroup of COVID-19 patients (n=9) participated in a follow-up examination with repeated blood collection reach five times during the hospitalization. The correlations of SAA levels with laboratory testing were then analyzed using the Spearman test.Results: The results of the data analysis show that the media SAA levels at acute phases were significantly higher (P < 0.05) compared to that at baseline. Furthermore, ascensional range of SAA were associated with the degree of COVID-19 severity. Media SAA levels at convalescent phases were significantly decreased (P < 0.05) compared to that at acute phases. The same phenomenon was seen in patients with and without comorbidities and with fever patients except without fever patients. Furthermore, The SAA concentration change in 9 COVID-19 patients of longitudinal follow-up along with the CT score and SARS-CoV-2 nucleic acid change. In the course of the disease, SAA changes were greater than CRP, lymphocytes, and neutrophils.Conclusions: The serum SAA levels were found to be significantly correlated with impending course of the COVID-19, and may serve as a useful biomarker to monitor the complicated clinical course of the disease.


2020 ◽  
Vol 40 (7) ◽  
pp. 1199-1211 ◽  
Author(s):  
Sirena Soriano ◽  
Bridget Moffet ◽  
Evan Wicker ◽  
Sonia Villapol

2019 ◽  
Author(s):  
Yuchen He ◽  
Changcheng Ma ◽  
Jia Xing ◽  
Shiyue Wang ◽  
Ji Chao ◽  
...  

Abstract Background: Acute aortic dissection (AAD) is a life-threatening disorder in vascular surgery with a high early mortality. Serum amyloid A (SAA) is a kind of acute-phase protein with a rapid diagnostic value in other diseases. However, the researches on the performance of SAA for the diagnosis of AAD is still lacking. This retrospective study aimed to evaluate the SAA levels and further explore its potential diagnostic role in AAD patients. Methods: SAA levels were measured by enzyme-linked immunosorbent assay (ELISA) in 63 controls and 87 AAD patients. Laboratory examinations were also performed. And relative clinical information was collected from participants included in this study. Results: SAA levels were significantly higher in AAD patients than those in healthy controls. SAA levels were independently associated with the risk of AAD. There was a positive significant correlation between SAA and C reactive protein (R=0.442, and P=0.001). Based on receiver-operating characteristic (ROC) analysis, the area under the curve (AUC) of SAA for the diagnosis of AAD were 0.942 with optimal cut-off points of 0.427mg/L. For in-hospital mortality, the AUC of SAA were 0.732 with optimal cut-off points of 0.500mg/L. According to logistic regression analysis, higher SAA levels represent a higher risk of in-hospital mortality (OR=1.25; 95%CI: 1.07-1.47; P=0.005). Conclusion: Our findings demonstrated that SAA levels were significantly enhanced in AAD. SAA was closely correlated with inflammatory parameters and coagulation-related parameters in AAD. Furthermore, SAA could be a potential bio-marker for identifying AAD in the early diagnosis. Finally, SAA >5.0 mg/L are independently related to AAD in-hospital mortality.


2019 ◽  
Author(s):  
Yuchen He ◽  
Changcheng Ma ◽  
Jia Xing ◽  
Shiyue Wang ◽  
Ji Chao ◽  
...  

Abstract Background: Acute aortic dissection (AAD) is a life-threatening disorder in vascular surgery with a high early mortality. Serum amyloid A (SAA) is a kind of acute-phase protein with a rapid diagnostic value in other diseases. However, the researches on the performance of SAA for the diagnosis of AAD is still lacking. This retrospective study aimed to evaluate the SAA levels and further explore its potential diagnostic role in AAD patients. Methods: SAA levels were measured by enzyme-linked immunosorbent assay (ELISA) in 63 controls and 87 AAD patients. Laboratory examinations were also performed. And relative clinical information was collected from participants included in this study. Results: SAA levels were significantly higher in AAD patients than those in healthy controls. SAA levels were independently associated with the risk of AAD. There was a positive significant correlation between SAA and C reactive protein (R=0.442, and P=0.001). Based on receiver-operating characteristic (ROC) analysis, the area under the curve (AUC) of SAA for the diagnosis of AAD were 0.942 with optimal cut-off points of 0.427mg/L. For in-hospital mortality, the AUC of SAA were 0.732 with optimal cut-off points of 0.500mg/L. According to logistic regression analysis, higher SAA levels represent a higher risk of in-hospital mortality (OR=1.25; 95%CI: 1.07-1.47; P=0.005). Conclusion: Our findings demonstrated that SAA levels were significantly enhanced in AAD. SAA was closely correlated with inflammatory parameters and coagulation-related parameters in AAD. Furthermore, SAA could be a potential bio-marker for identifying AAD in the early diagnosis. Finally, SAA >5.0 mg/L are independently related to AAD in-hospital mortality.


2021 ◽  
Vol 22 (3) ◽  
pp. 1036
Author(s):  
Xuguang Lin ◽  
Kenichi Watanabe ◽  
Masahiro Kuragano ◽  
Kiyotaka Tokuraku

Amyloid A (AA) amyloidosis is a condition in which amyloid fibrils characterized by a linear morphology and a cross-β structure accumulate and are deposited extracellularly in organs, resulting in chronic inflammatory diseases and infections. The incidence of AA amyloidosis is high in humans and several animal species. Serum amyloid A (SAA) is one of the most important precursor amyloid proteins and plays a vital step in AA amyloidosis. Amyloid enhancing factor (AEF) serves as a seed for fibril formation and shortens the onset of AA amyloidosis sharply. In this study, we examined whether AEFs extracted and purified from five animal species (camel, cat, cattle, goat, and mouse) could promote mouse SAA (mSAA) protein aggregation in vitro using quantum-dot (QD) nanoprobes to visualize the aggregation. The results showed that AEFs shortened and promoted mSAA aggregation. In addition, mouse and cat AEFs showed higher mSAA aggregation-promoting activity than the camel, cattle, and goat AEFs. Interestingly, homology analysis of SAA in these five animal species revealed a more similar amino acid sequence homology between mouse and cat than between other animal species. Furthermore, a detailed comparison of amino acid sequences suggested that it was important to mSAA aggregation-promoting activity that the 48th amino acid was a basic residue (Lys) and the 125th amino acid was an acidic residue (Asp or Glu). These data imply that AA amyloidosis exhibits higher transmission activity among animals carrying genetically homologous SAA gene, and may provide a new understanding of the pathogenesis of amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document