scholarly journals High-Resolution Steady-State Cerebral Blood Volume Maps in Patients with Central Nervous System Neoplasms Using Ferumoxytol, a Superparamagnetic Iron Oxide Nanoparticle

2013 ◽  
Vol 33 (5) ◽  
pp. 780-786 ◽  
Author(s):  
Csanad G Varallyay ◽  
Eric Nesbit ◽  
Rongwei Fu ◽  
Seymur Gahramanov ◽  
Brendan Moloney ◽  
...  

Cerebral blood volume (CBV) measurement complements conventional magnetic resonance imaging (MRI) to indicate pathologies in the central nervous system (CNS). Dynamic susceptibility contrast (DSC) perfusion imaging is limited by low resolution and distortion. Steady-state (SS) imaging may provide higher resolution CBV maps but was not previously possible in patients. We tested the feasibility of clinical SS-CBV measurement using ferumoxytol, a nanoparticle blood pool contrast agent. SS-CBV measurement was analyzed at various ferumoxytol doses and compared with DSC-CBV using gadoteridol. Ninety nine two-day MRI studies were acquired in 65 patients with CNS pathologies. The SS-CBV maps showed improved contrast to noise ratios, decreased motion artifacts at increasing ferumoxytol doses. Relative CBV (rCBV) values obtained in the thalamus and tumor regions indicated good consistency between the DSC and SS techniques when the higher dose (510 mg) ferumoxytol was used. The SS-CBV maps are feasible using ferumoxytol in a clinical dose of 510 mg, providing higher resolution images with comparable rCBV values to the DSC technique. Physiologic imaging using nanoparticles will be beneficial in visualizing CNS pathologies with high vascularity that may or may not correspond with blood–brain barrier abnormalities.

2007 ◽  
Vol 48 (5) ◽  
pp. 550-556 ◽  
Author(s):  
R. Wirestam ◽  
L. Knutsson ◽  
J. Risberg ◽  
S. Börjesson ◽  
E.-M. Larsson ◽  
...  

Background: Attempts to retrieve absolute values of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) have typically resulted in overestimations. Purpose: To improve DSC-MRI CBF estimates by calibrating the DSC-MRI-based cerebral blood volume (CBV) with a corresponding T1-weighted (T1W) steady-state (ss) CBV estimate. Material and Methods: 17 volunteers were investigated by DSC-MRI and 133Xe SPECT. Steady-state CBV calculation, assuming no water exchange, was accomplished using signal values from blood and tissue, before and after contrast agent, obtained by T1W spin-echo imaging. Using steady-state and DSC-MRI CBV estimates, a calibration factor K = CBV(ss)/CBV(DSC) was obtained for each individual. Average whole-brain CBF(DSC) was calculated, and the corrected MRI-based CBF estimate was given by CBF(ss) = K×CBF(DSC). Results: Average whole-brain SPECT CBF was 40.1±6.9 ml/min·100 g, while the corresponding uncorrected DSC-MRI-based value was 69.2±13.8 ml/min·100 g. After correction with the calibration factor, a CBF(ss) of 42.7±14.0 ml/min·100 g was obtained. The linear fit to CBF(ss)-versus-CBF(SPECT) data was close to proportionality ( R = 0.52). Conclusion: Calibration by steady-state CBV reduced the population average CBF to a reasonable level, and a modest linear correlation with the reference 133Xe SPECT technique was observed. Possible explanations for the limited accuracy are, for example, large-vessel partial-volume effects, low post-contrast signal enhancement in T1W images, and water-exchange effects.


Sign in / Sign up

Export Citation Format

Share Document