scholarly journals Response of single nephron glomerular filtration rate to distal nephron microperfusion

1974 ◽  
Vol 6 (4) ◽  
pp. 230-240 ◽  
Author(s):  
Thomas J. Burke ◽  
L.Gabriel Navar ◽  
James R. Clapp ◽  
Roscoe R. Robinson
1978 ◽  
Vol 234 (5) ◽  
pp. F357-F370 ◽  
Author(s):  
L. G. Navar

The phenomenon of renal autoregulation is often thought to relate only to the manner in which the kidney responds to changes in arterial pressure. This review presents a more comprehensive description of the process based on the intrinsic renal vascular responses to changes in arterial pressure, venous pressure, ureteral pressure, and plasma colloid osmotic pressure. Regulation of glomerular filtration rate (GFR), or some function thereof, is the feature most consistently observed. More specifically, in response to external manipulations that change GFR, autonomous changes in renal vascular resistance tend to return GFR back towards normal. The bulk of the evidence suggests that the requisite renal vascular resistance alterations occur predominately at preglomerular segments. Most of the whole kidney autoregulatory responses can be explained on the basis of the distal tubule-glomerular feedback hypothesis, thought to be mediated by the macula densa-juxtaglomerular complex, which states that increases in distal volume delivery lead to increases in afferent arteriolar resistance while reduced distal delivery leads to afferent arteriolar dilation. Micropuncture data have demonstrated that interruption of distal volume delivery prevents single nephrons from autoregulating GFR and glomerular pressure. Also, single nephron glomerular filtration rate (SNGFR) based on proximal collections is higher than SNGFR measured by distal collections or with an indicator-dilution technique. Studies utilized direct microperfusion of the distal nephron from a late proximal tubule site have demonstrated that SNGFR and glomerular pressure decrease in response to increases in distal nephron perfusion rate. Although experiments in rats have been interpreted as indicating that distal chloride concentration and/or reabsorption most likely mediate the feedback responses, recent studies in dogs have demonstrated that feedback responses can be consistently obtained with nonelectrolyte perfusion solutions. These latter studies suggest that the feedback response may be sensitive to some function of total solute delivery or concentration. At present, there is no clear understanding of the intracellular events that link the compositional alterations occurring within the early distal tubule to the final effector system.


1984 ◽  
Vol 246 (1) ◽  
pp. F12-F20 ◽  
Author(s):  
J. R. Dilley ◽  
C. T. Stier ◽  
W. J. Arendshorst

Clearance and micropuncture studies were conducted on 6-wk-old spontaneously hypertensive rats (SHR) of the Okamoto-Aoki strain and normotensive Wistar-Kyoto rats (WKY) under euvolemic conditions. Mean arterial pressure in SHR was elevated by 18 mmHg and their kidneys were vasoconstricted with reduced blood flow; resistances in preglomerular vessels and efferent arterioles were elevated 2.8 and 2 times, respectively, above WKY values. Whole kidney glomerular filtration rate (GFR) and single nephron glomerular filtration rate (SNGFR), based on fluid collection from either proximal or distal convolutions, were 25-30% lower in SHR. Fractional reabsorptions of fluid load by the proximal convoluted tubule (43%) and by the loop of Henle (52-55%) were similar in both groups. Accordingly, SHR exhibited less fluid delivery from the proximal convolution (8 vs. 12 nl/min) and to the distal convolution (3 vs. 5 nl/min). Glomerular dynamics in hypertensive and normotensive strains were characterized by filtration pressure disequilibrium. Estimated glomerular capillary pressure and mean effective ultrafiltration pressure were similar in SHR and WKY. SHR had a lower glomerular ultrafiltration coefficient than WKY (0.011 vs. 0.016 nl X s-1 X mmHg-1), which, combined with a lower glomerular plasma flow (41 vs. 73 nl/min), quantitatively accounted for the lower SNGFR in 6-wk-old SHR. These findings document important differences in renal function in young SHR compared with WKY that may participate in the development of hypertension.


1981 ◽  
Vol 241 (6) ◽  
pp. F612-F617
Author(s):  
E. J. Braun ◽  
D. R. Roy ◽  
R. L. Jamison

A micropuncture study of Perognathus penicillatus, a small rodent native to the deserts of the southwestern United States was performed to evaluate the function of the superficial nephron. Data are reported for 12 animals of 17 g average body wt. Mean glomerular filtration rate was 475 +/- 73 microliter X min-1 X g kidney wt-1. Urine osmolality averaged 1,154 +/- 197 mosmol/kg H2O. Single nephron glomerular filtration rate averaged 43 nl X min-1 X g kidney wt-1 in the proximal tubule and 48 in the distal tubule, values that are not significantly different. In terms of the filtered load remaining unreabsorbed at the end of the accessible proximal tubule, the average percentages were 46 water, 48 total solute, 45 sodium, 56 phosphorus, 62 potassium, 71 magnesium, and 54 calcium. The concentrations of potassium and magnesium in fluid samples increased significantly along the proximal tubule. Approximately at the midpoint of the distal tubule, fractional delivery of water, 13.1%, was greater than that for total solute, 10%, or sodium, 7%, indicating that the intervening segment of nephron reabsorbed solute and sodium in excess of water. The function of the superficial nephron resembles that of species previously investigated except for potassium reabsorption in the proximal convoluted tubule.


1986 ◽  
Vol 250 (1) ◽  
pp. F22-F26 ◽  
Author(s):  
M. G. Cogan

Although a change in renal nerve activity is known to alter proximal reabsorption, it is unclear whether reabsorption of NaHCO3 or NaCl or both are affected. Sprague-Dawley rats (n = 10) were studied using free-flow micropuncture techniques during euvolemia and following acute ipsilateral denervation. Glomerular filtration rate and single nephron glomerular filtration rate were stable. Absolute proximal bicarbonate reabsorption fell following denervation (933 +/- 40 to 817 +/- 30 pmol/min) with a parallel reduction in chloride reabsorption (1,643 +/- 116 to 1,341 +/- 129 peq/min). Urinary sodium, potassium, bicarbonate, and chloride excretion all increased significantly. To further assess the physiological significance of neurogenic modulation of proximal transport, other rats (n = 6) were subjected to acute unilateral nephrectomy (AUN). There is evidence that AUN induces a contralateral natriuresis (renorenal reflex) at least partially by causing inhibition of efferent renal nerve traffic. AUN caused significant changes in proximal NaHCO3 and NaCl reabsorption as well as in whole kidney electrolyte excretion in the same pattern as had denervation. Prior denervation of the remaining kidney prevented the proximal and whole kidney response to AUN (n = 6). In conclusion, depression of renal nerve activity inhibits both NaHCO3 and NaCl reabsorption in the rat superficial proximal convoluted tubule. The data are consistent with the hypothesis that changes in renal nerve activity modify whole kidney electrolyte excretion under physiological conditions at least partially by regulating proximal transport.


1986 ◽  
Vol 250 (6) ◽  
pp. F967-F974 ◽  
Author(s):  
U. Boberg ◽  
A. E. Persson

Studies of whole-kidney function and micropuncture measurements in superficial nephrons were performed to investigate the role of the tubuloglomerular feedback (TGF) in the excretion of salt and water in hydropenic and volume-expanded rats of the spontaneously hypertensive Milan strain (MHS). The rats were 3.5-5 and 5-7 wk old, and age-matched animals from the Milan normotensive strain (MNS) served as controls. There was no difference in mean arterial blood pressure (Pa) between the 3.5- to 5-wk-old prehypertensive MHS (MHSp) and MNS rats, but the glomerular filtration rate (GFR) was higher in MHSp than in MNS [1.35 vs. 0.80 ml X min-1 X g kidney wt (KW)-1, P less than 0.01]. The distal single-nephron glomerular filtration rate (SNGFR) was also higher in MHSp than in MNS (28.6 vs. 20.2 nl X min-1 X g KW-1, P less than 0.05). TGF was determined from both stop-flow pressure response and proximal and distal SNGFR. It was found that MHSp exhibited essentially no TGF response. During development of hypertension 5- to 7-wk-old MHS (MHSd) had a higher Pa than MNS (120 vs. 98 mmHg, P less than 0.01). Normally GFR and SNGFR increase with age, and such was the case with MNS (0.8 to 1.02 ml X min-1 X g KW-1 and 20.2 to 23.4 nl X min-1 X g KW-1), but in MHSd there was a decrease in both GFR and SNGFR with age (1.35 to 1.10 ml X min-1 X g KW-1 and 28.3 to 18.3 nl X min-1 X g KW-1).(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 255 (6) ◽  
pp. F1243-F1248 ◽  
Author(s):  
T. W. Meyer ◽  
H. G. Rennke

The effects of reducing nephron number in rats with established nephrosis were investigated. Rats received an injection of adriamycin and were divided into three groups with similar values for proteinuria after 4 wk. Group 1 rats were then subjected to sham operation. Group 2 rats were subjected to four-fifths renal ablation, and group 3 rats were subjected to four-fifths renal ablation and then maintained on enalapril. Micropuncture and morphological studies were performed 3 wk later. During this 3-wk period, proteinuria increased slightly in each group. Increased proteinuria in groups 2 and 3 reflected a dramatic increase in remnant nephron proteinuria after renal ablation in nephrotic rats. Increased remnant nephron proteinuria in groups 2 and 3 was associated with increased single-nephron glomerular filtration rate (group 1, 30 +/- 2 nl/min; group 2, 54 +/- 3 nl/min; group 3, 41 +/- 4 nl/min) and increased glomerular volume (group 1, 0.93 +/- 0.05 x 10(6) micron 3; group 2, 1.30 +/- 0.09 x 10(6) micron 3; group 3, 1.27 +/- 0.05 x 10(6) micron 3). The increase in single-nephron glomerular filtration rate after renal ablation in both group 2 and 3 rats was attributable to an increase in glomerular plasma flow (group 1, 119 +/- 14 nl/min; group 2, 217 +/- 18 nl/min; group 3, 183 +/- 13 nl/min) without a significant increase in glomerular transcapillary hydraulic pressure (group 1, 45 +/- 1 mmHg; group 2, 48 +/- 3 mmHg; group 3, 44 +/- 2 mmHg). Group 2 exhibited an increase in systemic blood pressure that was prevented by enalapril treatment in group 3. These studies show that an increase in remnant nephron proteinuria accompanies glomerular hypertrophy and hyperfiltration when nephron number is reduced in nephrotic rats. This increase in remnant nephron proteinuria is not attributable to elevation of systemic or glomerular capillary pressure.


1979 ◽  
Vol 237 (1) ◽  
pp. F63-F74 ◽  
Author(s):  
L. C. Moore ◽  
J. Schnermann ◽  
S. Yarimizu

Tubuloglomerular feedback (TGF) mediation of autoregulation was investigated by measuring the response of single nephron glomerular filtration rate (SNGFR) to changes in arterial pressure (AP) following acute or chronic TGF inhibition. In hydropenic rats with intact TGF, distal SNGFR was 25.0 +/- 1.2 (SE) and 23.9 +/- 1.4 nl/min at AP of 111 and 135 mmHg, respectively. In the same 20 nephrons during proximal tubular microinfusion of furosemide, distal SNGFR was 23.6 +/- 1.4 (n = 16) and 29.7 +/- 1.4 nl/min (n = 20) (P less than 0.001, n = 16) at 112 and 133 mmHg. When determined proximally, SNGFR was 25.6 +/- 1.0 and 29.5 +/- 0.9 nl/min (P less than 0.001, n = 31) at 112 and 157 mmHg; kidney GFR increased similarly. These data and the predictions of a GFR model were then used to estimate autoregulatory efficiency. This analysis indicated that partial autoregulation occurred during TGF inhibition. Therefore, TGF is an essential, but probably not the only, mechanism mediating SNGFR autoregulation.


Sign in / Sign up

Export Citation Format

Share Document