Feedback mediation of SNGFR autoregulation in hydropenic and DOCA- and salt-loaded rats

1979 ◽  
Vol 237 (1) ◽  
pp. F63-F74 ◽  
Author(s):  
L. C. Moore ◽  
J. Schnermann ◽  
S. Yarimizu

Tubuloglomerular feedback (TGF) mediation of autoregulation was investigated by measuring the response of single nephron glomerular filtration rate (SNGFR) to changes in arterial pressure (AP) following acute or chronic TGF inhibition. In hydropenic rats with intact TGF, distal SNGFR was 25.0 +/- 1.2 (SE) and 23.9 +/- 1.4 nl/min at AP of 111 and 135 mmHg, respectively. In the same 20 nephrons during proximal tubular microinfusion of furosemide, distal SNGFR was 23.6 +/- 1.4 (n = 16) and 29.7 +/- 1.4 nl/min (n = 20) (P less than 0.001, n = 16) at 112 and 133 mmHg. When determined proximally, SNGFR was 25.6 +/- 1.0 and 29.5 +/- 0.9 nl/min (P less than 0.001, n = 31) at 112 and 157 mmHg; kidney GFR increased similarly. These data and the predictions of a GFR model were then used to estimate autoregulatory efficiency. This analysis indicated that partial autoregulation occurred during TGF inhibition. Therefore, TGF is an essential, but probably not the only, mechanism mediating SNGFR autoregulation.

1986 ◽  
Vol 250 (6) ◽  
pp. F967-F974 ◽  
Author(s):  
U. Boberg ◽  
A. E. Persson

Studies of whole-kidney function and micropuncture measurements in superficial nephrons were performed to investigate the role of the tubuloglomerular feedback (TGF) in the excretion of salt and water in hydropenic and volume-expanded rats of the spontaneously hypertensive Milan strain (MHS). The rats were 3.5-5 and 5-7 wk old, and age-matched animals from the Milan normotensive strain (MNS) served as controls. There was no difference in mean arterial blood pressure (Pa) between the 3.5- to 5-wk-old prehypertensive MHS (MHSp) and MNS rats, but the glomerular filtration rate (GFR) was higher in MHSp than in MNS [1.35 vs. 0.80 ml X min-1 X g kidney wt (KW)-1, P less than 0.01]. The distal single-nephron glomerular filtration rate (SNGFR) was also higher in MHSp than in MNS (28.6 vs. 20.2 nl X min-1 X g KW-1, P less than 0.05). TGF was determined from both stop-flow pressure response and proximal and distal SNGFR. It was found that MHSp exhibited essentially no TGF response. During development of hypertension 5- to 7-wk-old MHS (MHSd) had a higher Pa than MNS (120 vs. 98 mmHg, P less than 0.01). Normally GFR and SNGFR increase with age, and such was the case with MNS (0.8 to 1.02 ml X min-1 X g KW-1 and 20.2 to 23.4 nl X min-1 X g KW-1), but in MHSd there was a decrease in both GFR and SNGFR with age (1.35 to 1.10 ml X min-1 X g KW-1 and 28.3 to 18.3 nl X min-1 X g KW-1).(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 233 (5) ◽  
pp. F396-F402 ◽  
Author(s):  
T. E. Jackson ◽  
A. C. Guyton ◽  
J. E. Hall

Measurement of rapid renal hemodynamic changes were made for 90 s in pentobarbital-anesthetized dogs following step increases and decreases in renal arterial pressure between 80 and 120 mm Hg. Transient analysis was used to observe time characteristics of the autoregulatory relationships which are obscured in steadystate measurements. Temporal decoupling of blood flow and glomerular filtration rate (GFR) occurred with both step increases and decreases of arterial pressure. Steady-state autoregulation of blood flow was attained in about 30 s, whereas steady-state autoregulation of GFR was not demonstrably attained even 90 s after the arterial pressure maneuver. The temporal decoupling of renal blood flow and GRR supports the concept of transient involvement of proximal tubular dynamics and efferent resistance changes during acute autoregulation of GFR following step changes in arterial pressure.


2001 ◽  
Vol 281 (5) ◽  
pp. R1362-R1367 ◽  
Author(s):  
Russell Brown ◽  
Anna Ollerstam ◽  
Björn Johansson ◽  
Ole Skøtt ◽  
Samuel Gebre-Medhin ◽  
...  

The hypothesis that adenosine acting on adenosine A1 receptors (A1R) regulates several renal functions and mediates tubuloglomerular feedback (TGF) was examined using A1R knockout mice. We anesthetized knockout, wild-type, and heterozygous mice and measured glomerular filtration rate, TGF response using the stop-flow pressure (Psf) technique, and plasma renin concentration. The A1R knockout mice had an increased blood pressure compared with wild-type and heterozygote mice. Glomerular filtration rate was similar in all genotypes. Proximal tubular Psf was decreased from 36.7 ± 1.2 to 25.3 ± 1.6 mmHg in the A1R+/+ mice and from 38.1 ± 1.0 to 27.4 ± 1.1 mmHg in A1R+/− mice in response to an increase in tubular flow rate from 0 to 35 nl/min. This response was abolished in the homozygous A1R−/− mice (from 39.1 ± 4.1 to 39.2 ± 4.5 mmHg). Plasma renin activity was significantly greater in the A1R knockout mice [74.2 ± 14.3 milli-Goldblatt units (mGU)/ml] mice compared with the wild-type and A1R+/− mice (36.3 ± 8.5 and 34.1 ± 9.6 mGU/ml), respectively. The results demonstrate that adenosine acting on A1R is required for TGF and modulates renin release.


1978 ◽  
Vol 234 (5) ◽  
pp. F357-F370 ◽  
Author(s):  
L. G. Navar

The phenomenon of renal autoregulation is often thought to relate only to the manner in which the kidney responds to changes in arterial pressure. This review presents a more comprehensive description of the process based on the intrinsic renal vascular responses to changes in arterial pressure, venous pressure, ureteral pressure, and plasma colloid osmotic pressure. Regulation of glomerular filtration rate (GFR), or some function thereof, is the feature most consistently observed. More specifically, in response to external manipulations that change GFR, autonomous changes in renal vascular resistance tend to return GFR back towards normal. The bulk of the evidence suggests that the requisite renal vascular resistance alterations occur predominately at preglomerular segments. Most of the whole kidney autoregulatory responses can be explained on the basis of the distal tubule-glomerular feedback hypothesis, thought to be mediated by the macula densa-juxtaglomerular complex, which states that increases in distal volume delivery lead to increases in afferent arteriolar resistance while reduced distal delivery leads to afferent arteriolar dilation. Micropuncture data have demonstrated that interruption of distal volume delivery prevents single nephrons from autoregulating GFR and glomerular pressure. Also, single nephron glomerular filtration rate (SNGFR) based on proximal collections is higher than SNGFR measured by distal collections or with an indicator-dilution technique. Studies utilized direct microperfusion of the distal nephron from a late proximal tubule site have demonstrated that SNGFR and glomerular pressure decrease in response to increases in distal nephron perfusion rate. Although experiments in rats have been interpreted as indicating that distal chloride concentration and/or reabsorption most likely mediate the feedback responses, recent studies in dogs have demonstrated that feedback responses can be consistently obtained with nonelectrolyte perfusion solutions. These latter studies suggest that the feedback response may be sensitive to some function of total solute delivery or concentration. At present, there is no clear understanding of the intracellular events that link the compositional alterations occurring within the early distal tubule to the final effector system.


1991 ◽  
Vol 261 (1) ◽  
pp. F169-F178 ◽  
Author(s):  
P. P. Leyssac ◽  
F. M. Karlsen ◽  
O. Skott

The dynamics of intrarenal pressures, early distal tubular fluid conductivity (EDC), and renal flood flow (RBF) were studied in rats given acetazolamide (ACZ), an inhibitor of proximal reabsorption. Glomerular filtration rate (GFR) and end-proximal flow were estimated by clearances of 51Cr-EDTA and lithium. Proximal tubular pressure (Pprox) increased initially by 1.7 +/- 0.1 mmHg after ACZ, causing a decrease in the hydrostatic pressure difference across the glomerular membrane (delta P). EDC increased, and then RBF, glomerular capillary pressure (Pgc), Pprox, and star vessel pressures (Psv) dropped as a result of afferent vasoconstriction. Pprox decreased less than Pgc, resulting in a further decrease in delta P, which after 25–30 s reached a constant level 3-4 mmHg below control. After a transient increase the pressures declined to a new steady state, in which Pprox was equal to control, Pgc was decreased, and distal tubular pressure, end-proximal flow, and EDC were increased. GFR was depressed by 29%. The results indicate that the tubuloglomerular feedback mechanism controls Pgc and Pprox by afferent vasoconstriction, as well as efferent vasodilation. The data also indicate that proximal reabsorption rate is important in determining the changes in delta P by its effect on Pprox at least in the early transient phase.


1985 ◽  
Vol 248 (5) ◽  
pp. F688-F697 ◽  
Author(s):  
G. A. Tanner

The effects of 1 day of single nephron, unilateral ureteral (UUO), and bilateral ureteral (BUO) obstruction on tubuloglomerular feedback were studied in anesthetized rats. Stop-flow pressure (SFP) was measured as an index of glomerular capillary pressure before, during, and after loop of Henle microperfusion. Tubuloglomerular feedback (delta SFP) showed an increased sensitivity to low loop perfusion rates and an increased maximal response after 1 day of single nephron obstruction or relief of UUO. Tubuloglomerular feedback was not significantly different from normal after release of BUO. Whole kidney glomerular filtration rate (GFR) was about 10% of normal after release of ureteral obstruction, and single nephron glomerular filtration rate (SNGFR) averaged one-third of normal. Paired measurements of SNGFR from proximal and distal tubules revealed no significant differences in control or in BUO kidneys, but a significant proximal-distal SNGFR difference was observed after UUO. The results suggest that tubuloglomerular feedback does not significantly contribute to the low GFR after release of BUO; after release of UUO, approximately one-fourth of the fall in GFR may be due to activation of the feedback mechanism.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 83 ◽  
Author(s):  
Jurgen Schnermann ◽  
Mona Oppermann ◽  
Yuning Huang

An increase of glomerular filtration rate (hyperfiltration) is an early functional change associated with type I or type II diabetes mellitus in patients and animal models. The causes underlying glomerular hyperfiltration are not entirely clear. There is evidence from studies in the streptozotocin model of diabetes in rats that an increase of proximal tubular reabsorption results in the withdrawal of a vasoconstrictor input exerted by the tubuloglomerular feedback (TGF) mechanism. In the present study, we have used micropuncture to assess single nephron function in wild type (WT) mice and in two strains of type I diabetic Ins2+/- mice in either a C57Bl/6 (Akita) or an A1AR-/- background (Akita/A1AR-/-) in which TGF is non-functional. Kidney glomerular filtration rate (GFR) of anesthetized mice was increased by 25% in Akita mice and by 52% in Akita/A1AR-/-, but did not differ between genotypes when corrected for kidney weight. Single nephron GFR (SNGFR) measured by end-proximal fluid collections averaged 11.8 ± 1 nl/min (n=17), 13.05 ± 1.1 nl/min (n=23; p=0.27), and 15.4 ± 0.84 nl/min (n=26; p=0.009 compared to WT; p=0.09 compared to Akita) in WT, Akita, and Akita/A1AR-/- mice respectively. Proximal tubular fluid reabsorption was not different between WT and diabetic mice and correlated with SNGFR in all genotypes. We conclude that glomerular hyperfiltration is a primary event in the Akita model of type I diabetes, perhaps driven by an increased filtering surface area, and that it is ameliorated by TGF to the extent that this regulatory system is functional.


1985 ◽  
Vol 249 (4) ◽  
pp. F524-F531 ◽  
Author(s):  
U. Boberg ◽  
A. E. Persson

Interstitial hydrostatic and oncotic pressures are believed to influence the sensitivity of the tubuloglomerular feedback (TGF) control. To further investigate this hypothesis, three groups of experiments with elevated renal venous pressure (Prv) were conducted. We investigated 1) the stop-flow pressure (Psf) feedback response; 2) urine flow rate, glomerular filtration rate (GFR), subcapsular interstitial hydrostatic pressure (Psc), and interstitial oncotic pressure (pi int); and 3) the proximal-distal single nephron glomerular filtration rate (SNGFR). The results showed that the Psf feedback response was unaffected by Prv elevation. Psc increased from 0.5 to 3.5 mmHg and pi int increased from 2.1 to 5.8 mmHg; thus, no change in net interstitial pressure (Psc - pi int) was found during elevated Prv. There was a significant proximal-distal SNGFR difference during both control and elevated Prv (8.0 and 6.3 nl/min, respectively). A 20% reduction in total GFR and SNGFR was observed at increased Prv. In separate experiments using the same protocol, a 5% body wt/h volume expansion with saline was induced before Prv was elevated. During volume expansion, TGF sensitivity declined and net interstitial pressure increased, both of which were normalized by increasing Prv. The results show that the TGF sensitivity is normal during elevated Prv to 20 mmHg and that the increase in Psc during this condition is counter-balanced by an increase in pi int. In addition, the decrease in GFR and SNGFR during increased Prv cannot be explained by a change in TGF activity. However, these findings indicate that both interstitial hydrostatic and oncotic pressures may influence the resetting of the TGF sensitivity.


1994 ◽  
Vol 266 (5) ◽  
pp. R1544-R1550 ◽  
Author(s):  
P. P. Leyssac ◽  
F. M. Karlsen ◽  
N. H. Holstein-Rathlou ◽  
O. Skott

The carbonic anhydrase inhibitor acetazolamide (ACZ) inhibits the absolute rate of proximal reabsorption (APR), causes a reduction in glomerular filtration rate (GFR), and activates the tubuloglomerular feedback mechanism (TGF) resulting in afferent vasoconstriction. The quantitative importance of the afferent vasoconstriction for the reduced GFR was tested by addition of a vasodilator during continuous infusion of ACZ. Dopamine caused an increase in renal blood flow (RBF) to pre-ACZ levels. Glomerular capillary pressure (Pgc) and proximal tubular pressure (Pprox) increased in parallel (by 3.1 and 3.0 mmHg, respectively) leaving pressure gradient (delta P) unchanged. APR, as estimated from the clearances of 51Cr-EDTA and lithium, remained unchanged. Urine flow almost doubled. GFR was only modestly reversed (pre-ACZ/ACZ/ACZ+dopamine: 100/77/83%). It is concluded that relieving the afferent vasoconstriction seen after carbonic anhydrase inhibition fails to restore GFR to its control value. This is due to the high flow resistance in the distal nephron segments during the increased tubular flow rates seen after ACZ. The high distal flow resistance causes a parallel change in Pgc and Pprox and thus leaves delta P nearly unchanged. The present study highlights the importance of the distal flow resistance in determining delta P and therefore GFR during conditions where tubular flow rate is increased.


Sign in / Sign up

Export Citation Format

Share Document