scholarly journals Renal sodium channels: Regulation and single channel properties

1995 ◽  
Vol 48 (4) ◽  
pp. 941-949 ◽  
Author(s):  
Douglas C. Eaton ◽  
Andrea Becchetti ◽  
Heping Ma ◽  
Brian N. Ling
1991 ◽  
Vol 261 (4) ◽  
pp. C718-C725 ◽  
Author(s):  
C. Mathes ◽  
F. Bezanilla ◽  
R. E. Weiss

The macroscopic and single-channel properties of sodium currents and membrane potential were studied in intact extensor digitorum longus (EDL) muscle fibers from mdx (C57BL/10ScSn-mdx) and normal (C57BL/10SnJ) mice. The voltage dependence of activation and inactivation were determined and the associated gating charges were calculated to determine if the lack of dystrophin associated with the mdx condition has any influence on sodium channels either directly or by effects on the membrane environment of the channel. Sodium currents were recorded from cell-attached patches on EDL muscle fibers isolated by collagenase treatment and manual dissection. Both macroscopic and single-channel currents were studied. We found no apparent difference in the sodium channel properties from the two types of muscle. In addition, microelectrode measurements in both mdx and normal muscle fibers indicated similar resting membrane potentials (Vm around -95 mV), which suggests that the normal behavior of sodium channels in the muscle sarcolemma is unaffected by the X-linked gene defect.


2008 ◽  
Vol 100 (4) ◽  
pp. 2115-2124 ◽  
Author(s):  
Adrian Rodriguez-Contreras ◽  
Ping Lv ◽  
Jun Zhu ◽  
Hyo Jeong Kim ◽  
Ebenezer N. Yamoah

To minimize the effects of Ca2+ buffering and signaling, this study sought to examine single Ca2+ channel properties using Sr2+ ions, which substitute well for Ca2+ but bind weakly to intracellular Ca2+ buffers. Two single-channel fluctuations were distinguished by their sensitivity to dihydropyridine agonist (L-type) and insensitivity toward dihydropyridine antagonist (non-L-type). The L- and non-L-type single channels were observed with single-channel conductances of 16 and 19 pS at 70 mM Sr2+ and 11 and 13 pS at 5 mM Sr2+, respectively. We obtained KD estimates of 5.2 and 1.9 mM for Sr2+ for L- and non-L-type channels, respectively. At Ca2+ concentration of ∼2 mM, the single-channel conductances of Sr2+ for the L-type channel was ∼1.5 and 4.0 pS for the non-L-type channels. Thus the limits of single-channel microdomain at the membrane potential of a hair cell (e.g., −65 mV) for Sr2+ ranges from 800 to 2,000 ion/ms, assuming an ECa of 100 mV. The channels are ≥4-fold more sensitive at the physiological concentration ranges than at concentrations >10 mM. Additionally, the channels have the propensity to dwell in the closed state at high concentrations of Sr2+, which is reflected in the time constant of the first latency distributions. It is concluded that the concentration of the permeant ion modulates the gating of hair cell Ca2+ channels. Finally, the closed state/s that is/are altered by high concentrations of Sr2+ may represent divalent ion-dependent inactivation of the L-type channel.


1991 ◽  
Vol 66 (4) ◽  
pp. 1166-1175 ◽  
Author(s):  
D. O. Smith ◽  
C. Franke ◽  
J. L. Rosenheimer ◽  
F. Zufall ◽  
H. Hatt

1. Single-channel properties of desensitizing glutamate-activated channels were analyzed in outside-out patch-clamp recordings from a motoneuron-enriched cell fraction from embryonic chick. A piezo-driven device was used to achieve fast solution exchange at the electrode tip, resulting in maximum activation within 2 ms. 2. Quisqualate/AMPA receptors, with a 13-pS conductance, desensitized rapidly; the desensitization rate depended on agonist concentration but not on membrane potential. When quisqualate was applied slowly, the quisqualate-activated channels desensitized without prior channel opening, indicating desensitization from the closed state. After a 10-ms refractory period, resensitization of all channels required up to 300 ms; resensitization rate did not depend on the duration of the preceding quisqualate application. 3. At agonist concentrations less than or equal to 1 mM, kainate receptors, with a 20-pS conductance, did not desensitize. At kainate concentrations greater than or equal to 1 mM, though, kainate receptors desensitized to a low steady-state conductance within approximately 200 ms. Resensitization of all channels required as long as 3 s, which could render kainate receptors inexcitable during high-frequency activation. 4. Desensitization rates of whole-cell currents were similar to those observed in outside-out mode. Glutamate- and quisqualate-activated responses were similar, suggesting that the rapidly desensitizing quisqualate-sensitive receptor type may dominate the kinetics of whole-cell excitatory postsynaptic currents (EPSCs) in this preparation. 5. It may be concluded that the efficacy of glutamate-mediated synaptic transmission is modulated by differences in the rates of desensitization and resensitization.


2021 ◽  
Author(s):  
Di Wu

Ion-channel functions are often studied by the current-voltage relation, which is commonly fitted by the Boltzmann equation, a powerful model widely used nowadays. However, the Boltzmann model is restricted to a two-state ion-permeation process. Here we present an improved model that comprises a flexible number of states and incorporates both the single-channel conductance and the open-channel probability. Employing the channel properties derived from the single-channel recording experiments, the proposed model is able to describe various current-voltage relations, especially the reversal ion-permeation curves showing the inward- and outward-rectifications. We demonstrate the applicability of the proposed model using the published patch-clamp data of BK and MthK potassium channels, and discuss the similarity of the two channels based on the model studies.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Niels Voigt ◽  
Ange Maguy ◽  
Yung-Hsin Yeh ◽  
Xiao-Yan Qi ◽  
Ursula Ravens ◽  
...  

Background: Although atrial tachycardia (AT) appears to promote agonist-independent constitutively active I K,ACh that increases susceptibility to AF, direct demonstration of dysregulated I K,ACh channel function is lacking. We studied AT effects on single I K,ACh channel activity in dog atria. Methods: I K,ACh channel activity was recorded with cell-attached patch clamp in isolated atrial myocytes of control (CTL) and AT (7 days, 400 min −1 ) dogs. Results : AT prolonged inducible AF duration from 44±22 to 413±167 s; N=9 dogs/gp, P<0.001. In the absence of cholinergic stimulation, single-channel openings with typical I K,ACh conductance and rectification were observed in CTL and AT (Figure ). AT produced prominent agonist-independent I K,ACh activity due to 7-fold increased opening frequency (f o ) and 10-fold increased open probability (P o ) vs CTL (P<0.01 for each), but unaltered open time and single channel conductance. With maximum I K,ACh activation (10 μm carbachol, CCh), f o was 38% lower, open time constant 25% higher, and P o and unitary conductance unchanged for AT vs CTL. The selective Kir3 blocker tertiapin (100 nM) reduced f o and P o by 48% and 51% (P<0.05 each) without altering other channel properties, confirming the identity of I K,ACh. Conclusions : AT produces prominent agonist-independent constitutive single-channel I K,ACh activity, providing a molecular basis for previously-observed AT-enhanced macroscopic I K,ACh , as well as associated AP-shortening and tertiapin-suppressible AF promotion. These results suggest an important role for constitutively active I K,ACh channels in AT-remodeling and support their interest as a potential novel AF-therapy target.


Sign in / Sign up

Export Citation Format

Share Document