therapy target
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 91)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Weipu Mao ◽  
Keyi Wang ◽  
Bin Xu ◽  
Hui Zhang ◽  
Si Sun ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nuoya Li ◽  
Lei Wu ◽  
Xingye Zuo ◽  
Huilong Luo ◽  
Yanling Sheng ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors all over the world. And recurrence and metastasis are still the main causes of low survival rate for advanced GC. USP1 has been shown overexpressed in multiple cancers, which indicate its important biomarker in tumorigenesis and development. Our study is aimed at defining the exact role of USP1 on GC metastasis and the underlying mechanism. USP1 was firstly found overexpressed in GC tissues and relatively high-expression levels conferred poor survival rates. Then, real-time cellular analysis (RTCA) showed that USP1 knockdown inhibited GC metastasis both in vitro and in vivo. Mechanically, we demonstrated that USP1 promoted GC metastasis via upregulating ID2 expression and further confirmed that USP1 stabilized ID2 expression through deubiquitinating ID2 in GC. In conclusion, our study showed that USP1 promoted GC metastasis via stabilizing ID2 expression, which provides a potential biomarker and therapy target for GC.


Author(s):  
Aiqin Mao ◽  
Peng Zhang ◽  
Ka Zhang ◽  
Hao Kan ◽  
Dongxu He ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Bolun Li ◽  
Xiaomin Song ◽  
Wenjun Guo ◽  
Yangfeng Hou ◽  
Huiyuan Hu ◽  
...  

Abdominal aortic aneurysm (AAA) is potentially life-threatening in aging population due to the risk of aortic rupture and a lack of optimal treatment. The roles of different vascular and immune cells in AAA formation and pathogenesis remain to be future characterized. Single-cell RNA sequencing was performed on an angiotensin (Ang) II-induced mouse model of AAA. Macrophages, B cells, T cells, fibroblasts, smooth muscle cells and endothelial cells were identified through bioinformatic analyses. The discovery of multiple subtypes of macrophages, such as the re-polarization of Trem2+Acp5+ osteoclast-like and M2-like macrophages toward the M1 type macrophages, indicates the heterogenous nature of macrophages during AAA development. More interestingly, we defined CD45+COL1+ fibrocytes, which was further validated by flow cytometry and immunostaining in mouse and human AAA tissues. We then reconstituted these fibrocytes into mice with Ang II-induced AAA and found the recruitment of these fibrocytes in mouse AAA. More importantly, the fibrocyte treatment exhibited a protective effect against AAA development, perhaps through modulating extracellular matrix production and thus enhancing aortic stability. Our study reveals the heterogeneity of macrophages and the involvement of a novel cell type, fibrocyte, in AAA. Fibrocyte may represent a potential cell therapy target for AAA.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Xiao-Lin Shen ◽  
Jin-Feng Yuan ◽  
Xuan-He Qin ◽  
Guang-Ping Song ◽  
Huai-Bin Hu ◽  
...  

Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Luisa Fernanda Toro-Fernández ◽  
Juan Camilo Zuluaga-Monares ◽  
Ana María Saldarriaga-Cartagena ◽  
Gloria Patricia Cardona-Gómez ◽  
Rafael Posada-Duque

Glutamate excitotoxicity triggers overactivation of CDK5 and increases calcium influx in neural cells, which promotes dendritic retraction, spine loss, increased mitochondrial calcium from the endoplasmic reticulum, and neuronal death. Our previous studies showed that CDK5 knockdown (KD) in astrocytes improves neurovascular integrity and cognitive functions and exerts neuroprotective effects. However, how CDK5-targeted astrocytes affect calcium regulation and whether this phenomenon is associated with changes in neuronal plasticity have not yet been analyzed. In this study, CDK5 KD astrocytes transplanted in CA3 remained at the injection site without proliferation, regulated calcium in the CA1 hippocampal region after excitotoxicity by glutamate in ex vivo hippocampal slices, improving synapsin and PSD95 clustering. These CDK5 KD astrocytes induced astrocyte stellation and neuroprotection after excitotoxicity induced by glutamate in vitro. Also, these effects were supported by CDK5 inhibition (CDK5i) in vitro through intracellular stabilization of calcium levels in astrocytes. Additionally, these cells in cocultures restored calcium homeostasis in neurons, redistributing calcium from somas to dendrites, accompanied by dendrite branching, higher dendritic spines and synapsin-PSD95 clustering. In summary, induction of calcium homeostasis at the CA1 hippocampal area by CDK5 KD astrocytes transplanted in the CA3 area highlights the role of astrocytes as a cell therapy target due to CDK5-KD astrocyte-mediated synaptic clustering, calcium spreading regulation between both areas, and recovery of the intracellular astrocyte-neuron calcium imbalance and plasticity impairment generated by glutamate excitotoxicity.


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1395
Author(s):  
Kiyoka Sawada ◽  
Kentaro Nakayama ◽  
Kohei Nakamura ◽  
Yuki Yoshimura ◽  
Sultana Razia ◽  
...  

Recent advances in next-generation sequencing and genome medicine have contributed to treatment decisions in patients with cancer. Most advanced gynecological cancers develop resistance to chemotherapy and have a poor prognosis. Therefore, we conducted genomic tests in gynecological tumors to examine the efficacy and clinical feasibility of genotype-matched therapy. Target sequencing was performed in 20 cases of gynecological cancers (cervical cancer, 6; endometrial cancer, 6; and ovarian cancer, 6). Both actionable and druggable genes were identified in 95% (19/20) of the cases. Among them, seven patients (35%) received genotype-matched therapy, which was effective in three patients. Of the three patients, one patient with a PTEN mutation received everolimus, another patient with a TSC2 mutation received everolimus and letrozole, and the patient with a BRIP1 mutation received olaparib. Subsequently, disease control in these three patients lasted for more than half a year. However, all patients relapsed between 9 and 13 months after the initiation of genotype-matched therapy. In this study, the response rate of genotype-matched therapy was 43% (3/7), which may have contributed to improved prognoses. Therefore, genotype-matched therapies may help patients with refractory gynecological cancers achieve better outcomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Phuong T. Le ◽  
Ngoc Ha ◽  
Ngan K. Tran ◽  
Andrew G. Newman ◽  
Katharine M. Esselen ◽  
...  

Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4779
Author(s):  
Wojciech Kowalczyk ◽  
Grzegorz Waliszczak ◽  
Robert Jach ◽  
Joanna Dulińska-Litewka

Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid—vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.


Sign in / Sign up

Export Citation Format

Share Document