scholarly journals KCa3.1 channels mediate the increase of cell migration and proliferation by advanced glycation endproducts in cultured rat vascular smooth muscle cells

2012 ◽  
Vol 93 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Li-Mei Zhao ◽  
Xing-Li Su ◽  
Yan Wang ◽  
Gui-Rong Li ◽  
Xiu-Ling Deng
2001 ◽  
Vol 152 (6) ◽  
pp. 1197-1206 ◽  
Author(s):  
Bernard Degryse ◽  
Tiziana Bonaldi ◽  
Paola Scaffidi ◽  
Susanne Müller ◽  
Massimo Resnati ◽  
...  

HMG1 (high mobility group 1) is a ubiquitous and abundant chromatin component. However, HMG1 can be secreted by activated macrophages and monocytes, and can act as a mediator of inflammation and endotoxic lethality. Here we document a role of extracellular HMG1 in cell migration. HMG1 (and its individual DNA-binding domains) stimulated migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays. HMG1 induced rapid and transient changes of cell shape, and actin cytoskeleton reorganization leading to an elongated polarized morphology typical of motile cells. These effects were inhibited by antibodies directed against the receptor of advanced glycation endproducts, indicating that the receptor of advanced glycation endproducts is the receptor mediating the HMG1-dependent migratory responses. Pertussis toxin and the mitogen-activated protein kinase kinase inhibitor PD98059 also blocked HMG1-induced rat smooth muscle cell migration, suggesting that a Gi/o protein and mitogen-activated protein kinases are required for the HMG1 signaling pathway. We also show that HMG1 can be released by damage or necrosis of a variety of cell types, including endothelial cells. Thus, HMG1 has all the hallmarks of a molecule that can promote atherosclerosis and restenosis after vascular damage.


2007 ◽  
Vol 45 (3) ◽  
pp. 581-589 ◽  
Author(s):  
Thomas S. Monahan ◽  
Nicholas D. Andersen ◽  
Haig Panossian ◽  
Jeffrey A. Kalish ◽  
Soizic Daniel ◽  
...  

2005 ◽  
Vol 33 (11) ◽  
pp. 1546-1554 ◽  
Author(s):  
Hak-Joon Sung ◽  
Suzanne G. Eskin ◽  
Yumiko Sakurai ◽  
Andrew Yee ◽  
Noriyuki Kataoka ◽  
...  

2010 ◽  
Vol 45 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ping Jiang ◽  
Jinwen Xu ◽  
Shuhui Zheng ◽  
Jinghe Huang ◽  
Qiuling Xiang ◽  
...  

Atherosclerosis is an inflammatory disease where lipopolysaccharide (LPS) triggers the release of inflammatory cytokines that accelerate its initiation and progression. Estrogen has been proven to be vasoprotective against atherosclerosis; however, the anti-inflammatory function of estrogen in the vascular system remains obscure. In this study, we investigated the effect of estrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1; listed as CCL2 in the MGI database) production in vascular smooth muscle cells (VSMCs). LPS significantly enhances MCP-1 production and this is dependent on nuclear factor κ B (NFκB) signaling, since the use of NFκB inhibitor pyrrolidine dithiocarbamate or the silencing of NFκB subunit p65 expression with specific siRNA largely impairs LPS-enhanced MCP-1 production. On the contrary, 17β-estradiol (E2) inhibits LPS-induced MCP-1 production in a time- and dose-dependent manner, which is related to the suppression of p65 translocation to nucleus. Furthermore, p38 MAPK is rapidly activated in response to LPS, while E2 markedly inhibits p38 MAPK activation. Transfection with p38 MAPK siRNA or the use of p38 MAPK inhibitor SB203580 markedly attenuates LPS-stimulated p65 translocation to nucleus and MCP-1 production, suggesting that E2 suppresses NFκB signaling by the inactivation of p38 MAPK signaling. LPS promotes VSMCs migration and this is abrogated by MCP-1 antibody, implying that MCP-1 may play a major role as an autocrine factor in atherosclerosis. In addition, E2 inhibits LPS-promoted cell migration by downregulation of MCP-1 production. Overall, our results demonstrate that E2 exerts anti-inflammatory property antagonistic to LPS in VSMCs by reducing MCP-1 production, and this effect is related to the inhibition of p38 MAPK/NFκB cascade.


Sign in / Sign up

Export Citation Format

Share Document