scholarly journals Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice

Leukemia ◽  
2009 ◽  
Vol 23 (8) ◽  
pp. 1446-1454 ◽  
Author(s):  
Y Chen ◽  
Y Hu ◽  
S Michaels ◽  
D Segal ◽  
D Brown ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2912-2912 ◽  
Author(s):  
Yaoyu Chen ◽  
Yiguo Hu ◽  
Shawnya Michaels ◽  
Dennis Brown ◽  
Shaoguang Li

Abstract The Abl tyrosine kinase inhibitors (TKIs) imatinib mesylate (IM) and dasatinib, targeting BCR-ABL for the treatment of Philadelphia-positive (Ph+) leukemia including chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL), have produced impressive results in terms of therapeutic outcome and safety for patients. However, clinical resistance to these TKIs likely at the level of leukemic stem cell negates curative results in Ph+ leukemia. At present, an anti-stem cell strategy has not been developed for treating these leukemia patients. Homoharringtonine (HHT) (omacetaxine mepesuccinate - USAN/INN designation) has shown significant clinical activity in CML in combination with IM or alone for patients failing IM. However, little is known about whether HHT has an inhibitory effect on leukemic stem cells. The purpose of this study is to determine whether HHT inhibits BCR-ABL-expressing leukemic stem cells (Lin-c-Kit+Sca-1+) that we identified previously (Hu et al. Proc Natl Acad Sci USA 103(45):16870–16875, 2007) and to evaluate therapeutic effects of HHT on CML and B-ALL in mice. We find that in our in vitro stem cell assay, greater than 90% of leukemic stem cells were killed after being treating with HHT (12.5, 25, and 50 nM) for 6 days, and in contrast, greater than 75% or 92% of leukemic stem cells survived the treatment with dasatinib (100 nM) or imatinib (2 mM). We next treated CML mice with HHT (0.5 mg/kg, i.p., once a day). 4 days after the treatment, FACS analysis detected only 2% GFP+Gr–1+ myeloid leukemia cells in peripheral blood of HHT -treated CML mice and in contrast, 41% GFP+Gr–1+ myeloid leukemia cells in placebo-treated mice. We also treated mice with BCR-ABL induced B-ALL with HHT, and found that only 0.78% GFP+B220+ lymphoid leukemia cells were detected in peripheral blood compared to 34% GFP+B220+ lymphoid leukemia cells in placebo-treated mice. Furthermore, HHT significantly inhibited in vitro proliferation of K562 and B-lymphoid leukemic cells isolated from mice with B-ALL induced by BCR-ABL wild type and BCR-ABL-T315I resistant to both imatinib and dasatinib. In sum, HHT has an inhibitory activity against CML stem cells, and is highly effective in treating CML and B-ALL induced by BCR-ABL in mice.


1982 ◽  
Vol 68 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Mario Cazzola ◽  
Giulio Nalli ◽  
Ercole Brusamolino ◽  
Maurizio Daccò ◽  
Angela Ghizzi ◽  
...  

Five of 40 patients with chronic myeloid leukemia (CML) had lymphoid blast crisis and 4 of them achieved complete remission of metamorphosis with vincristine and prednisone. While in hematologic remission, two of these subjects developed meningeal leukemia. Clinical and biologic data indicated that the course of the disease after lymphoid blast crisis was very similar to that of acute lymphoblastic leukemia (ALL). It is suggested that patients with CML who develop lymphoid blast crisis should be treated with an intensive therapeutic protocol including early prevention of meningeal leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4660-4660 ◽  
Author(s):  
Pascal Vannuffel ◽  
Luana Bavaro ◽  
Friedel Nollet ◽  
Asena Aynaci ◽  
Margherita Martelli ◽  
...  

Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) are, respectively, a myeloproliferative and a lymphoproliferative neoplasm that can be characterized by the chimeric fusion oncogene BCR-ABL1. Tyrosine Kinase Inhibitors (TKI) are the standard therapy for patients with CML/ALL. However, mutations of the BCR-ABL1 kinase domain constitute a major cause of treatment failure in CML and ALL receiving TKI therapy. While 2nd and 3rd generation TKI have proven their efficacy against mutated BCR-ABL1-mediated clonal expansion, the presence of compound mutations can produce high level of resistance to these TKIs. Even the last addition to the TKI armamentarium, ponatinib, remains ineffective against some BCR-ABL1 compound mutations (Zabriskie, M.S., et al., BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014. 26(3):p.428-442). Therefore, the distinction between compound (different mutations present on 1 unique malignant clone) and polyclonal mutations (different mutations present on 2 or more different clones) is of great clinical importance in order to select the most suitable treatment and to estimate outcomes. The objective of this study is to determine in a straightforward way whether BCR-ABL1 mutations discovered by Next Generation Sequencing are compound mutations or polyclonal mutations. A simple proof-of-concept experiment was first performed by using 3 synthetic oligonucleotides (gBlocks, IDT) mimicking the presence of compound mutations versus polyclonal mutations in resistant leukemia cells. The first oligo harbored the M237I mutation, the second oligo mutations E255K, E279K, V299L, T315I, F359V, A380S, H396R, S417Y, F459K and F486S and the third one contained all the mutations. Dual-color probes assays have been set up to target specifically 2 different mutations. Mixtures of 2 oligonucleotides harboring 1 mutation each versus 1 oligonucleotide harboring 2 mutations have been compared by performing duplex droplet digital PCR (ddPCR) reactions on the Bio-Rad ddPCR QX200 System. Linkage detection is based on the observation that the presence of 2 targets on the same DNA molecule increases the number of double-positive droplets relative to the number expected due to chance. Automatic linkage evaluation was made by the QuantaSoft Software and mathematical calculations refer to (Regan, J.F., et al., A rapid molecular approach for chromosomal phasing. PLoS One, 2015. 10(3): p. e0118270). The first experiment successfully validated the detection of mutations residing on two different oligonucleotides (polyclonal mutations) versus mutations on the same molecule (compound mutations). When performing serial dilutions of 2 oligonucleotides containing different mutations, a sensitivity of 10%:90% was achieved with a good linearity (r2=0.97). Mixing experiment also showed that ddPCR phasing could distinguish between a mixture of compound and polyclonal mutations versus and the sole presence of polyclonal mutations at the same sensitivity and linearity levels. Moreover, no influence of the genomic distance between mutations (from position 255 to position 562) was observed. The strategy was further applied to 20 clinical samples from CML/ALL patients characterized by multiple resistance mutations. Drop-phase is a rapid (< 4 hours), scalable (100 samples), technically easy to perform and cost-effective method. This strategy will help to identify compound mutations in patients with TKI-resistant CML/ALL and allow to modulate the patient's drug strategy and to prevent progression and therapeutic failure. Disclosures Vannuffel: Incyte: Consultancy. Soverini:Incyte: Consultancy.


2013 ◽  
Vol 12 (2) ◽  
pp. 114
Author(s):  
Kaumudee Pattnaik ◽  
Asaranti Kar ◽  
Chandrasekhar Mohapatra ◽  
Sabita Palai ◽  
Bibudhendu Pati

Blood ◽  
2014 ◽  
Vol 123 (25) ◽  
pp. 3951-3962 ◽  
Author(s):  
Harald Herrmann ◽  
Irina Sadovnik ◽  
Sabine Cerny-Reiterer ◽  
Thomas Rülicke ◽  
Gabriele Stefanzl ◽  
...  

Key Points DPPIV (CD26) is a new specific marker of CML LSC that aids CML diagnostics and the measurement, characterization, and purification of LSC. DPPIV on CML LSC degrades SDF-1 and thereby promotes the niche-escape of LSC, which may contribute to extramedullary myeloproliferation in CML.


Sign in / Sign up

Export Citation Format

Share Document