Performance comparison of benchtop high-throughput sequencing platforms

2012 ◽  
Vol 30 (5) ◽  
pp. 434-439 ◽  
Author(s):  
Nicholas J Loman ◽  
Raju V Misra ◽  
Timothy J Dallman ◽  
Chrystala Constantinidou ◽  
Saheer E Gharbia ◽  
...  
2012 ◽  
Vol 30 (6) ◽  
pp. 562-562 ◽  
Author(s):  
Nicholas J Loman ◽  
Raju V Misra ◽  
Timothy J Dallman ◽  
Chrystala Constantinidou ◽  
Saheer E Gharbia ◽  
...  

SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Mohammed Ahmed ◽  
Melanie Sapp ◽  
Thomas Prior ◽  
Gerrit Karssen ◽  
Matthew Alan Back

Abstract. Nematodes represent a species-rich and morphologically diverse group of metazoans known to inhabit both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some plant-parasitic species are also known to cause significant losses to crop production. In spite of this, there still exists a huge gap in our knowledge of their diversity due to the enormity of time and expertise often involved in characterising species using phenotypic features. Molecular methodology provides useful means of complementing the limited number of reliable diagnostic characters available for morphology-based identification. We discuss herein some of the limitations of traditional taxonomy and how molecular methodologies, especially the use of high-throughput sequencing, have assisted in carrying out large-scale nematode community studies and characterisation of phytonematodes through rapid identification of multiple taxa. We also provide brief descriptions of some the current and almost-outdated high-throughput sequencing platforms and their applications in both plant nematology and soil ecology.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Rafal Tokarz ◽  
Stephen Sameroff ◽  
Teresa Tagliafierro ◽  
Komal Jain ◽  
Simon H. Williams ◽  
...  

ABSTRACT Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis ( n = 1,138), Amblyomma americanum ( n = 720), and Dermacentor variabilis ( n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae . Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle.


2021 ◽  
Vol 22 (17) ◽  
pp. 9202
Author(s):  
Alissa Drees ◽  
Markus Fischer

Aptamers feature a number of advantages, compared to antibodies. However, their application has been limited so far, mainly because of the complex selection process. ‘High-throughput sequencing fluorescent ligand interaction profiling’ (HiTS–FLIP) significantly increases the selection efficiency and is consequently a very powerful and versatile technology for the selection of high-performance aptamers. It is the first experiment to allow the direct and quantitative measurement of the affinity and specificity of millions of aptamers simultaneously by harnessing the potential of optical next-generation sequencing platforms to perform fluorescence-based binding assays on the clusters displayed on the flow cells and determining their sequence and position in regular high-throughput sequencing. Many variants of the experiment have been developed that allow automation and in situ conversion of DNA clusters into base-modified DNA, RNA, peptides, and even proteins. In addition, the information from mutational assays, performed with HiTS–FLIP, provides deep insights into the relationship between the sequence, structure, and function of aptamers. This enables a detailed understanding of the sequence-specific rules that determine affinity, and thus, supports the evolution of aptamers. Current variants of the HiTS–FLIP experiment and its application in the field of aptamer selection, characterisation, and optimisation are presented in this review.


Pathology ◽  
2016 ◽  
Vol 48 ◽  
pp. S96
Author(s):  
Sarah L. Nickerson ◽  
Debra O. Prosser ◽  
Stella W.S. Lai ◽  
Donald R. Love

2013 ◽  
Vol 79 (8) ◽  
pp. 2519-2526 ◽  
Author(s):  
Nicholas A. Bokulich ◽  
David A. Mills

ABSTRACTUltra-high-throughput sequencing (HTS) of fungal communities has been restricted by short read lengths and primer amplification bias, slowing the adoption of newer sequencing technologies to fungal community profiling. To address these issues, we evaluated the performance of several common internal transcribed spacer (ITS) primers and designed a novel primer set and work flow for simultaneous quantification and species-level interrogation of fungal consortia. Primer comparison and validation were predictedin silicoand by sequencing a “mock community” of mixed yeast species to explore the challenges of amplicon length and amplification bias for reconstructing defined yeast community structures. The amplicon size and distribution of this primer set are smaller than for all preexisting ITS primer sets, maximizing sequencing coverage of hypervariable ITS domains by very-short-amplicon, high-throughput sequencing platforms. This feature also enables the optional integration of quantitative PCR (qPCR) directly into the HTS preparatory work flow by substituting qPCR with these primers for standard PCR, yielding quantification of individual community members. The complete work flow described here, utilizing any of the qualified primer sets evaluated, can rapidly profile mixed fungal communities and capably reconstructed well-characterized beer and wine fermentation fungal communities.


Sign in / Sign up

Export Citation Format

Share Document