Phase transitions: Activated by carbon dioxide

Nature China ◽  
2008 ◽  
Author(s):  
Tim Reid
2021 ◽  
Author(s):  
Jarad Mason ◽  
Jinyoung Seo ◽  
Ryan McGillicuddy ◽  
Adam Slavney ◽  
Selena Zhang ◽  
...  

Abstract Nearly 4,400 TWh of electricity—20% of the total consumed in the world—is used each year by refrigerators, air conditioners, and heat pumps for cooling. In addition to the 2.3 Gt of carbon dioxide emitted during the generation of this electricity, the vapor-compression-based devices that provided the bulk of this cooling emitted fluorocarbon refrigerants with a global warming potential equivalent to 1.5 Gt of carbon dioxide into the atmosphere. With population and economic growth expected to dramatically increase over the next several decades, the development of alternative cooling technologies with improved efficiency and reduced emissions will be critical to meeting global cooling needs in a more sustainable fashion. Barocaloric materials, which undergo thermal changes in response to applied hydrostatic pressure, offer the potential for solid-state cooling with high energy efficiency and zero direct emissions, as well as faster start-up times, quieter operation, greater amenability to miniaturization, and better recyclability than conventional vapor-compression systems. Efficient barocaloric cooling requires materials that undergo reversible phase transitions with large entropy changes, high sensitivity to hydrostatic pressure, and minimal hysteresis, the combination of which has been challenging to achieve in existing barocaloric materials. Here, we report a new mechanism for achieving colossal barocaloric effects near ambient temperature that exploits the large volume and conformational entropy changes of hydrocarbon chain-melting transitions within two-dimensional metal–halide perovskites. Significantly, we show how the confined nature of these order–disorder phase transitions and the synthetic tunability of layered perovskites can be leveraged to reduce phase transition hysteresis through careful control over the inorganic–organic interface. The combination of ultralow hysteresis (< 1.5 K) and high barocaloric coefficients (> 20 K/kbar) leads to large reversible isothermal entropy changes (> 200 J/kg•K) at record-low pressures (< 300 bar). We anticipate that these results will help facilitate the development of barocaloric cooling technologies and further inspire new materials and mechanisms for efficient solid-state cooling.


2021 ◽  
pp. 17-22
Author(s):  
N.N. Hamidov ◽  
◽  
◽  

The paper studies the effect of carbon dioxide on the phase transitions within gas-condensate systems and defines its role on the evaporation of retrograde condensate isolated in formation due to the decreasing pressure during development process. Based on the experiments carried out by special methodology in рVT bomb, the essence of various impact of carbon dioxide amount in the content of gas-condensate mixture on the physico-chemical and thermo-dynamic parameters of the system depending on the temperature interval revealed. As a result of experiments, it was defined that the increase of carbon dioxide within gas-condensate mixture raises the content of dispersed condensate in gas phase. Moreover, the increase of CO2 in gas phase leads to the growth of gas amount dissolved in a unit volume of condensate as well. It is shown that the effect of carbon dioxide on the pressure of retrograde condensation within gas-condensate system cannot be definitely estimated. The pressure of retrograde condensation within such mixtures may be different in various temperature diapasons due to the change of the features and critical parameters of the system.


1998 ◽  
Vol 109 (22) ◽  
pp. 10004-10010 ◽  
Author(s):  
M. P. Anisimov ◽  
J. A. Koropchak ◽  
A. G. Nasibulin ◽  
L. V. Timoshina

2019 ◽  
Vol 52 (20) ◽  
pp. 7786-7797 ◽  
Author(s):  
Anabella A. Abate ◽  
Giang Thi Vu ◽  
Cristian M. Piqueras ◽  
María Cecilia del Barrio ◽  
Leopoldo R. Gómez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document