scholarly journals The impact of climate change on photovoltaic power generation in Europe

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Sonia Jerez ◽  
Isabelle Tobin ◽  
Robert Vautard ◽  
Juan Pedro Montávez ◽  
Jose María López-Romero ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1803
Author(s):  
Yu Feng ◽  
Jijun Xu ◽  
Yang Hong ◽  
Yongqiang Wang ◽  
Zhe Yuan ◽  
...  

Changes in rainfall and streamflow due to climate change have an adverse impact on hydropower generation reliability and scheduling of cascade hydropower stations. To estimate the impact of climate change on hydropower, a combination of climate, hydrological, and hydropower scheduling models is needed. Here, we take the Jinsha River as an example to estimate the impact of climate change on total power generation of the cascade hydropower stations and residual load variance of the power grid. These two goals are solved by applying an improved multi-objective cuckoo search algorithm, and a variety of strategies for the optimal dispatch of hydropower stations are adopted to improve the efficiency of the algorithm. Using streamflow prediction results of CMIP5 climate data, in conjunction with the Xinanjiang model, the estimated results for the next 30 years were obtained. The results indicated that the negative correlation between total power generation and residual load variance under the RCP 2.6 scenario was weaker than that under the RCP 8.5. Moreover, the average power generation and the average residual load variance in RCP 2.6 was significantly larger than that in RCP 8.5. Thus, reducing carbon emissions is not only beneficial to ecological sustainability, but also has a positive impact on hydropower generation. Our approaches are also applicable for cascade reservoirs in other river catchments worldwide to estimate impact of climate change on hydropower development.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document