Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity

2007 ◽  
Vol 10 (10) ◽  
pp. 1308-1312 ◽  
Author(s):  
Ahalya Viswanathan ◽  
Ralph D Freeman
2004 ◽  
Vol 24 (7) ◽  
pp. 713-719 ◽  
Author(s):  
Pia Enager ◽  
Lorenz Gold ◽  
Martin Lauritzen

In acute brain disorders, elimination of the excitatory output from an injured brain region reduces activity in connecting brain regions remote from the lesion site (i.e., diaschisis). The authors examined the effect of functional ablation of the left cerebral cortex by cortical spreading depression (CSD) or topical application of tetrodotoxin on single cell spiking activity, baseline CBF, and neurovascular coupling in the right rat sensory cortex. CSD or tetrodotoxin in left cortex reduced the right cortical spontaneous spike rate by 36% and 45%, respectively. Baseline CBF in the right cortex was unaffected by a left-sided CSD, but decreased by 12% for left cortical application of tetrodotoxin. This suggested dissociation between spontaneous spiking activity and basal CBF. Left infraorbital nerve stimulation evoked local field potentials in right cerebral cortex that were reduced in amplitude by 19% for left CSD and by 23% for left tetrodotoxin application. The corresponding declines in the evoked CBF responses were 42% for CSD and 23% for tetrodotoxin. Vascular reactivity to adenosine remained unchanged in right cortex. Thus, transhemispheric diaschisis produced a pronounced decrease in the spontaneous spike rate accompanied by no reduction or a small reduction in basal CBF, and an attenuation in amplitudes of evoked synaptic responses and corresponding rises in CBF. The findings suggest that disturbed neurovascular coupling may contribute to the disturbance in brain function in acute transhemispheric diaschisis.


2020 ◽  
Author(s):  
Suzana Herculano‐Houzel ◽  
Felipe Barros Cunha ◽  
Jamie L. Reed ◽  
Consolate Kaswera‐Kyamakya ◽  
Emmanuel Gillissen ◽  
...  

Author(s):  
MB. Tank Buschmann

Development of oligodendrocytes in rat corpus callosum was described as a sequential change in cytoplasmic density which progressed from light to medium to dark (1). In rat optic nerve, changes in cytoplasmic density were not observed, but significant changes in morphology occurred just prior to and during myelination (2). In our study, the ultrastructural development of oligodendrocytes was studied in newborn, 5-, 10-, 15-, 20-day and adult frontal cortex of the golden hamster (Mesocricetus auratus).Young and adult hamster brains were perfused with paraformaldehyde-glutaraldehyde in sodium cacodylate buffer at pH 7.3 according to the method of Peters (3). Tissue samples of layer V of the frontal cortex were post-fixed in 2% osmium tetroxide, dehydrated in acetone and embedded in Epon-Araldite resin.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2001 ◽  
Vol 15 (1) ◽  
pp. 22-34 ◽  
Author(s):  
D.H. de Koning ◽  
J.C. Woestenburg ◽  
M. Elton

Migraineurs with and without aura (MWAs and MWOAs) as well as controls were measured twice with an interval of 7 days. The first session of recordings and tests for migraineurs was held about 7 hours after a migraine attack. We hypothesized that electrophysiological changes in the posterior cerebral cortex related to visual spatial attention are influenced by the level of arousal in migraineurs with aura, and that this varies over the course of time. ERPs related to the active visual attention task manifested significant differences between controls and both types of migraine sufferers for the N200, suggesting a common pathophysiological mechanism for migraineurs. Furthermore, migraineurs without aura (MWOAs) showed a significant enhancement for the N200 at the second session, indicating the relevance of time of measurement within migraine studies. Finally, migraineurs with aura (MWAs) showed significantly enhanced P240 and P300 components at central and parietal cortical sites compared to MWOAs and controls, which seemed to be maintained over both sessions and could be indicative of increased noradrenergic activity in MWAs.


1960 ◽  
Vol 5 (11) ◽  
pp. 374, 376
Author(s):  
A. EARL WALKER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document