scholarly journals Semiempirical, Hartree-Fock, density functional, and second order Moller-Plesset perturbation theory methods do not accurately predict ionization energies and electron affinities of short- through long-chain [n]acenes

Author(s):  
Sierra Rayne ◽  
Kaya Forest
2021 ◽  
Author(s):  
Chandler Greenwell ◽  
Jan Rezac ◽  
Gregory Beran

Second-order Møller-Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeing problems in organic and biological chemistry. However, MP2 suffers from known lim- itations in the description of van der Waals dispersion interactions and reaction thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme’s D3 formalism, replaces the uncoupled Hartree-Fock dispersion inherent in MP2 with a more robust coupled Kohn-Sham treatment. The spin- component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model. This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models where completely different spin-scaling parameters were needed for describing reaction energies versus in- termolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interac- tions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and ωB97M-V for systems with ∼100 atoms.


2016 ◽  
Vol 94 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Sierra Rayne ◽  
Kaya Forest

Vertical and adiabatic ionization energies (IEs) and electron affinities (EAs) were calculated for the n = 1–10 [n]acenes using a wide range of semiempirical, Hartree–Fock, density functional, and second-order Moller–Plesset perturbation theory model chemistries. None of the model chemistries examined was able to accurately predict the IEs or EAs for both short- through long-chain [n]acenes, as well as for extrapolations to the polymeric limit, when compared to available experimental and benchmark theoretical data. Except for 6-31G(d), the choice of the basis set does not affect B3LYP results significantly. Analogous calculations using a suite of eight modern and (or) popular density functionals for the n = 1–10 [n]phenacenes revealed similar problems in estimating the IEs and EAs of these compounds, with the sole exception of the M062X functional for adiabatic IEs and potentially the APFD, B3LYP, and MN12SX functionals for adiabatic EAs. The poor IE/EA prediction performance for the parent [n]acenes and [n]phenacenes may extend to their substituted derivatives and heteroatom-substituted analogs. Consequently, caution should be exercised in the application of non-high-level calculations for estimating the IE/EA of these important classes of materials.


Sign in / Sign up

Export Citation Format

Share Document