Long Range Transmission and Preservation of Single Crystal Structural Information by Interfacial Polycrystalline Layers

1971 ◽  
Vol 229 (8) ◽  
pp. 242-243
Author(s):  
G. I. DISTLER ◽  
V. G. OBRONOV
2008 ◽  
Vol 130 (9) ◽  
pp. 2869-2876 ◽  
Author(s):  
Suzanne M. Neville ◽  
Gregory J. Halder ◽  
Karena W. Chapman ◽  
Martin B. Duriska ◽  
Peter D. Southon ◽  
...  

2017 ◽  
Vol 19 (40) ◽  
pp. 27516-27529 ◽  
Author(s):  
A. Kowalewska ◽  
M. Nowacka ◽  
M. Włodarska ◽  
B. Zgardzińska ◽  
R. Zaleski ◽  
...  

Thermally induced formation of symmetric crystal lattices in functional POSS proceeds via different mechanisms and results in unique reversible phenomena.


2019 ◽  
Author(s):  
Ελένη Αζά

The discovery of materials with coexisting magnetic and ferroelectric orders, has revived theinterest of condensed matter physics and materials’ science communities maintaining the greatpromise of such fundamental mechanisms in devising applications ranging from portablemagnetoelectric (ME) sensors and memories to radar technologies. The present PhD thesis is a study in the field of strongly correlated systems where coupled properties arise from the interplay of charge and spin degrees of freedom over lattice topologies enabling competing magnetic interactions and therefore emergence of coupling of electric and magnetic order. Non-perovskite, two-dimensional (2D) Na-Mn-O oxides are revisited in scope of this in both polycrystalline and large single crystal forms. Among Na-deficient polymorphs, hexagonal α-Na0.7MnO2 (single crystals) has been investigated for the first time as a playground of competing interactions due to mixed Mnvalence (Mn4+ / Mn3+), fostered by Na vacancies in the structure. The competition of FM (Mn3+-Mn4+) and AFM (Mn3+ -Mn3+) interactions is believed to be the origin of the magnetic instability leading to a glassy ground state leaving also their footprint in the dielectric permittivity measurements. Competing FM and AFΜ interactions are also investigated as the origin of the anisotropic magnetic properties witnessed in a-NaxMnO2 (x= 0.96) single crystals. Neutron single crystal experiments show a well-established AFM long range order which vanishes above 26 K whilea coexistent canted antiferromagnetic state persists up to 45 K. In both alpha powders and aNa0.96MnO2 single crystals, the dielectric permittivity suggests the onset of the commensuratemagnetic long range order (T~ 45 K) which in the case of the powders allows a magnetocapacitance effect. Compositional modulations in β-NaMnO2, which are depicted as an intergrowth of α- and βlike oxygen coordinations, are found to trigger a proper-screw magnetic ground state which evolves into collinear commensurate AFM state. Features in the dielectric permittivity coincide with the onset of the commensurate AFM order giving away also the contribution of the α- structural domains. Further understanding of the mechanisms that dictate the relief of frustrated interactions and establishment of magnetic order together with the role of structural complexity in the form of domains or domain-walls is a direction that warrants further exploration as it will help us to resolve whether other coupled electron degrees of freedom are likely to be generated in this family of oxides.


1975 ◽  
Vol 30 (5-6) ◽  
pp. 462-464 ◽  
Author(s):  
R. Haegele ◽  
W. Verscharen ◽  
D. Babel

The parameters of complete X-ray structure determinations are given for the fluoridesRb2NaFeF6 and Rb2KFeF6 (cubic), Cs2NaCrF6 and Cs2NaFeF6 (hexagonal-rhom-bohedral) and Cs2LiGaF6 (hexagonal). Space group and lattice constants of the monoclinic cyanides Cs2BFe(CN)6 (B = Na, K, Rb) are reported as well.


Crystals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Aleksandra Pacanowska ◽  
Mateusz Reczyński ◽  
Beata Nowicka

The 1D {[CuII(cyclam)]3[WV(CN)8]2.5H2O}n (1·5H2O) (cyclam = 1,4,8,11-tetraazacyclotetradecane) coordination polymer of ladder topology can be obtained in water-alcohol solution from [Cu(cyclam)]2+ and [W(CN)8]3− building blocks. Upon dehydration, 1·5H2O undergoes a single-crystal-to-single-crystal structural transformation to the anhydrous {[CuII(cyclam)]3[WV(CN)8]2}n (1) form, which retains the same topology, but is characterized by shorter Cu-W distances and significantly more bent CN-bridges. The deformation of the coordination skeleton is reflected in magnetic properties: the predominant intra-chain interactions change from ferromagnetic in 1·5H2O to antiferromagnetic in 1. The reaction between the same building blocks in water solution under slow diffusion conditions leads to the formation of a 0D {[CuII(cyclam)(H2O)]2[CuII(cyclam)][WV(CN)8]2}.3H2O pentanuclear assembly (2·3H2O).


Author(s):  
Colin D. McMillen ◽  
Sara Comer ◽  
Kyle Fulle ◽  
Liurukara D. Sanjeewa ◽  
Joseph W. Kolis

The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La–Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials.


Sign in / Sign up

Export Citation Format

Share Document