scholarly journals Characteristics and outcome of acute myeloid leukemia with uncommon retinoic acid receptor-alpha (RARA) fusion variants

2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Laura Cicconi ◽  
Anna Maria Testi ◽  
Pau Montesinos ◽  
Eduardo Rego ◽  
Hong Hu Zhu ◽  
...  
2019 ◽  
Vol 10 (3) ◽  
pp. 153-156
Author(s):  
Varsha Gupta ◽  
Mohammed Shariff ◽  
Ravneet Bajwa ◽  
Ishan Patel ◽  
Hashem A. Ayyad ◽  
...  

2003 ◽  
Vol 23 (13) ◽  
pp. 4573-4585 ◽  
Author(s):  
Vernon T. Phan ◽  
David B. Shultz ◽  
Bao-Tran H. Truong ◽  
Timothy J. Blake ◽  
Anna L. Brown ◽  
...  

ABSTRACT We utilized a mouse model of acute promyelocytic leukemia (APL) to investigate how aberrant activation of cytokine signaling pathways interacts with chimeric transcription factors to generate acute myeloid leukemia. Expression in mice of the APL-associated fusion, PML-RARA, initially has only modest effects on myelopoiesis. Whereas treatment of control animals with interleukin-3 (IL-3) resulted in expanded myelopoiesis without a block in differentiation, PML-RARA abrogated differentiation that normally characterizes the response to IL-3. Retroviral transduction of bone marrow with an IL-3-expressing retrovirus revealed that IL-3 and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) combined to generate a lethal leukemia-like syndrome in <21 days. We also observed that a constitutively activated mutant IL-3 receptor, βcV449E, cooperated with PML-RARα in leukemogenesis, whereas a different activated mutant, βcI374N, did not. Analysis of additional mutations introduced into βcV449E showed that, although tyrosine phosphorylation of βc is necessary for cooperation, the Src homology 2 domain-containing transforming protein binding site is dispensable. Our results indicate that chimeric transcription factors can block the differentiative effects of growth factors. This combination can be potently leukemogenic, but the particular manner in which these types of mutations interact determines the ability of such combinations to generate acute myeloid leukemia.


2021 ◽  
Vol 12 ◽  
pp. 204062072097698
Author(s):  
Xiaoyan Han ◽  
Chunxiang Jin ◽  
Gaofeng Zheng ◽  
Yi Li ◽  
Yungui Wang ◽  
...  

Some subtypes of acute myeloid leukemia (AML) share morphologic, immunophenotypic, and clinical features of acute promyelocytic leukemia (APL), but lack a PML–RARA (promyelocytic leukemia–retinoic acid receptor alpha) fusion gene. Instead, they have the retinoic acid receptor beta (RARB) or retinoic acid receptor gamma (RARG) rearranged. Almost all of these AML subtypes exhibit resistance to all-trans retinoic acid (ATRA); undoubtedly, the prognosis is poor. Here, we present an AML patient resembling APL with a novel cleavage and polyadenylation specific factor 6 ( CPSF6) –RARG fusion, showing resistance to ATRA and poor response to chemotherapy with homoharringtonine and cytarabine. Simultaneously, the patient also had extramedullary infiltration.


Leukemia ◽  
2006 ◽  
Vol 20 (3) ◽  
pp. 437-443 ◽  
Author(s):  
M Ritter ◽  
D Kattmann ◽  
S Teichler ◽  
O Hartmann ◽  
M K R Samuelsson ◽  
...  

2013 ◽  
Vol 13 (5) ◽  
pp. 401-408 ◽  
Author(s):  
Samar Alsafadi ◽  
Caroline Even ◽  
Coralie Falet ◽  
Aicha Goubar ◽  
Frédéric Commo ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3330-3338 ◽  
Author(s):  
Beatrice U. Mueller ◽  
Thomas Pabst ◽  
José Fos ◽  
Vibor Petkovic ◽  
Martin F. Fey ◽  
...  

Abstract Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor α (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).


2017 ◽  
pp. 271-285
Author(s):  
Ganesan Padmavathi ◽  
Javadi Monisha ◽  
Anand Anip ◽  
Krishan Kumar Thakur ◽  
Ajaikumar B. Kunnumakkara

Sign in / Sign up

Export Citation Format

Share Document