scholarly journals High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer

2019 ◽  
Vol 122 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Masahiro Kawashima ◽  
Mariko Tokiwa ◽  
Tomomi Nishimura ◽  
Yukiko Kawata ◽  
Masahiro Sugimoto ◽  
...  

Abstract Background The fatty acid (FA) composition of phosphatidylinositols (PIs) is tightly regulated in mammalian tissue since its disruption impairs normal cellular functions. We previously found its significant alteration in breast cancer by using matrix-assisted laser desorption and ionisation imaging mass spectrometry (MALDI-IMS). Methods We visualised the histological distribution of PIs containing different FAs in 65 primary breast cancer tissues using MALDI-IMS and investigated its association with clinicopathological features and gene expression profiles. Results Normal ductal cells (n = 7) predominantly accumulated a PI containing polyunsaturated FA (PI-PUFA), PI(18:0/20:4). PI(18:0/20:4) was replaced by PIs containing monounsaturated FA (PIs-MUFA) in all non-invasive cancer cells (n = 12). While 54% of invasive cancer cells (n = 27) also accumulated PIs-MUFA, 46% of invasive cancer cells (n = 23) accumulated the PIs-PUFA, PI(18:0/20:3) and PI(18:0/20:4). The accumulation of PI(18:0/20:3) was associated with higher incidence of lymph node metastasis and activation of the PD-1-related immune checkpoint pathway. Fatty acid-binding protein 7 was identified as a putative molecule controlling PI composition. Conclusions MALDI-IMS identified PI composition associated with invasion and nodal metastasis of breast cancer. The accumulation of PI(18:0/20:3) could affect the PD-1-related immune checkpoint pathway, although its precise mechanism should be further validated.

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Stacy‐Ann Miller ◽  
Byron Waddy ◽  
Nabarun Chakraborty ◽  
Rasha Hammamieh ◽  
Marti Jett

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1132
Author(s):  
Javier A. Menendez ◽  
Adriana Papadimitropoulou ◽  
Travis Vander Steen ◽  
Elisabet Cuyàs ◽  
Bharvi P. Oza-Gajera ◽  
...  

The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity—an in vitro metric of tumorigenicity—of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1506
Author(s):  
Narjara Gonzalez Suarez ◽  
Sahily Rodriguez Torres ◽  
Amira Ouanouki ◽  
Layal El Cheikh-Hussein ◽  
Borhane Annabi

Obese subjects have an increased risk of developing triple-negative breast cancer (TNBC), in part associated with the chronic low-grade inflammation state. On the other hand, epidemiological data indicates that increased consumption of polyphenol-rich fruits and vegetables plays a key role in reducing incidence of some cancer types. Here, we tested whether green tea-derived epigallocatechin-3-gallate (EGCG) could alter adipose-derived mesenchymal stem cell differentiation into adipocytes, and how this impacts the secretome profile and paracrine regulation of the TNBC invasive phenotype. Here, cell differentiation was performed and conditioned media (CM) from preadipocytes and mature adipocytes harvested. Human TNBC-derived MDA-MB-231 real-time cell migration was performed using the exCELLigence system. Differential gene arrays and RT-qPCR were used to assess gene expression levels. Western blotting was used to assess protein expression and phosphorylation status levels. In vitro vasculogenic mimicry (VM) was assessed with Matrigel. EGCG was found to inhibit the induction of key adipogenic biomarkers, including lipoprotein lipase, adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. Increased TNBC-derived MDA-MB-231 cell chemotaxis and vasculogenic mimicry were observed in response to mature adipocytes secretome, and this was correlated with increased STAT3 phosphorylation status. This invasive phenotype was prevented by EGCG, the JAK/STAT inhibitors Tofacitinib and AG490, as well as upon STAT3 gene silencing. In conclusion, dietary catechin-mediated interventions could, in part through the inhibition of adipogenesis and modulation of adipocytes secretome profile, prevent the onset of an obesogenic environment that favors TNBC development.


2010 ◽  
Vol 206 (2) ◽  
pp. 98-101 ◽  
Author(s):  
Xiao Yan Tang ◽  
Shinobu Umemura ◽  
Hideo Tsukamoto ◽  
Nobue Kumaki ◽  
Yutaka Tokuda ◽  
...  

Author(s):  
Ibon Iloro ◽  
Joaquín Fernández-Irigoyen ◽  
Iraide Escobes ◽  
Mikel Azkargorta ◽  
Enrique Santamaría ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document