scholarly journals PSTPIP2 inhibits cisplatin-induced acute kidney injury by suppressing apoptosis of renal tubular epithelial cells

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hong Zhu ◽  
Wenjuan Jiang ◽  
Huizi Zhao ◽  
Changsheng He ◽  
Xiaohan Tang ◽  
...  

AbstractCisplatin (CP) is an effective chemotherapeutic agent widely used in the treatment of various solid tumours. However, CP nephrotoxicity is an important limitation for CP use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Recently, we identified a specific role of proline–serine–threonine phosphatase-interacting protein 2 (PSTPIP2) in cisplatin-induced AKI. PSTPIP2 was reported to play an important role in a variety of diseases. However, the functions of PSTPIP2 in experimental models of cisplatin-induced AKI have not been extensively studied. The present study demonstrated that cisplatin downregulated the expression of PSTPIP2 in the kidney tissue. Administration of AAV-PSTPIP2 or epithelial cell-specific overexpression of PSTPIP2 reduced cisplatin-induced kidney dysfunction and inhibited apoptosis of renal tubular epithelial cells. Small interfering RNA-based knockdown of PSTPIP2 expression abolished PSTPIP2 regulation of epithelial cell apoptosis in vitro. Histone acetylation may impact gene expression at the epigenetic level, and histone deacetylase (HDAC) inhibitors were reported to prevent cisplatin-induced nephrotoxicity. The UCSC database was used to predict that acetylation of histone H3 at lysine 27 (H3K27ac) induces binding to the PSTPIP2 promoter, and this prediction was validated by a ChIP assay. Interestingly, an HDAC-specific inhibitor (TSA) was sufficient to potently upregulate PSTPIP2 in epithelial cells. Histone acetylation-mediated silencing of PSTPIP2 may contribute to cisplatin nephrotoxicity. PSTPIP2 may serve as a potential therapeutic target in the prevention of cisplatin nephrotoxicity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Guo ◽  
Rong Wang ◽  
Donghai Liu

Sepsis is a common risk factor for acute kidney injury (AKI). Bone marrow-derived mesenchymal stem cells (BMSCs) bear multi-directional differentiation potential. This study explored the role of BMSCs in sepsis-induced AKI (SI-AKI). A rat model of SI-AKI was established through cecal ligation and perforation. The SI-AKI rats were injected with CM-DiL-labeled BMSCs, followed by evaluation of pathological injury of kidney tissues and kidney injury-related indicators and inflammatory factors. HK-2 cells were treated with lipopolysaccharide (LPS) to establish SI-SKI model in vitro. Levels of mitochondrial proteins, autophagy-related proteins, NLRP3 inflammasome-related protein, and expressions of Parkin and SIRT1 in renal tubular epithelial cells (RTECs) of kidney tissues and HK-2 cells were detected. The results showed that BMSCs could reach rat kidney tissues and alleviate pathological injury of SI-SKI rats. BMSCs inhibited inflammation and promoted mitophagy of RTECs and HK-2 cells in rats with SI-AKI. BMSCs upregulated expressions of Parkin and SIRT1 in HK-2 cells. Parkin silencing or SIRT1 inhibitor reversed the promoting effect of BMSCs on mitophagy. BMSCs inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin. In conclusion, BMSCs promoted mitophagy and inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin, thereby ameliorating SI-AKI.


Author(s):  
Mengxi Zhang ◽  
Wei Dong ◽  
Zhilian Li ◽  
Zhenmeng Xiao ◽  
Zhiyong Xie ◽  
...  

Mitochondrial damage in renal tubular epithelial cells (RTECs) is a hallmark of endotoxin-induced acute kidney injury (AKI). Forkhead box O1 (FOXO1) is responsible for regulating mitochondrial function and is involved in several kidney diseases. Herein, we investigated the effect of FOXO1 on endotoxin-induced AKI and the related mechanism. In vivo, FOXO1 downregulation in mouse RTECs and mitochondrial damage were found in endotoxin-induced AKI. Overexpression of FOXO1 by kidney focal adeno-associated virus (AAV) delivery improved renal function and reduced mitochondrial damage. PGC1-α, a master regulator of mitochondrial biogenesis and function, was reduced in endotoxin-induced AKI, but the reduction was reversed by FOXO1 overexpression. In vitro, exposure to LPS led to a decline in HK-2 cell viability, mitochondrial fragmentation, and mitochondrial superoxide accumulation, as well as downregulation of FOXO1, PGC1-α and mitochondrial complex I/V. Moreover, overexpression of FOXO1 in HK-2 cells increased HK-2 cell viability and PGC1-α expression, and it alleviated the mitochondrial injury and superoxide accumulation induced by LPS. Meanwhile, inhibition of FOXO1 in HK-2 cells by siRNA treatment decreased PGC1-α expression and HK-2 cell viability. Chromatin immunoprecipitation assays and PCR analysis confirmed that FOXO1 bound to the PGC1-α promoter in HK-2 cells. In conclusion, downregulation of FOXO1 in RTECs mediated endotoxin-induced AKI and mitochondrial damage. Overexpression of FOXO1 could improve renal injury and mitochondrial dysfunction, and this effect occurred at least in part as a result of PGC1-α signaling. FOXO1 might be a potential target for the prevention and treatment of endotoxin-induced AKI.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Ying Ding ◽  
Dao-yang Zhou ◽  
Hong Yu ◽  
Tao Zhu ◽  
Feng Guo ◽  
...  

AbstractAlthough increasing evidence has confirmed that the apoptosis of renal tubular epithelial cells (RTECs) is a crucial contributor to the onset and development of septic acute kidney injury (AKI), the pathological mechanism by which RTEC apoptosis is upregulated during septic AKI is not entirely clear. In this study, a rat model of septic AKI was induced by a cecal ligation puncture procedure or lipopolysaccharide (LPS) injection. Four differentially expressed long noncoding RNAs (DE-Lncs) in the rat model of septic AKI were determined using RNA-sequencing and verified by qRT-PCR. Among the four DE-Lncs, the expression level of lncRNA NONRATG019935.2 (9935) exhibited the most significant reduction in both septic AKI rats and LPS-treated NRK-52E cells (a rat RTEC line). The overexpression of 9935 suppressed cell apoptosis and p53 protein level in LPS-treated NRK-52E cells, and retarded septic AKI development in the rat model of septic AKI. Mechanistically, 9935 decreased the human antigen R (HuR)-mediated Tp53 mRNA stability by limiting the combination of HuR and the 3′UTR region of Tp53 mRNA in RTECs. The overexpression of HuR abrogated the inhibitory effect of pcDNA-9935 on the LPS-induced apoptosis of NRK-52E and rat primary RTECs. In conclusion, 9935 exerts its role in septic AKI by suppressing the p53-mediated apoptosis of RTECs, and this essential role of 9935 relies on its destructive effect on HuR-mediated Tp53 mRNA stability.


Shock ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Min Gao ◽  
Hongbin Li ◽  
Qilong Liu ◽  
Ning Ma ◽  
Panpan Zi ◽  
...  

2020 ◽  
Vol 318 (1) ◽  
pp. F96-F106 ◽  
Author(s):  
Yuanyuan Li ◽  
Weiwei Xia ◽  
Mengying Wu ◽  
Jie Yin ◽  
Qian Wang ◽  
...  

Cisplatin is one of the most effective antitumor agents, but its clinical use is highly limited by its severe side effects, especially nephrotoxicity. Recently, the active form of gasdermin D (GSDMD), termed GSDMD-N, was identified to mediate pyroptotic inflammatory cell death in several diseases. However, the role of the GSDMD-N fragment in cisplatin-induced acute kidney injury (AKI) remains unclear. In the present study, we found that pyroptosis was induced by cisplatin in both mouse kidney tissues and renal tubular epithelial cells, accompanied by increased expression of the GSDMD-N fragment. In GSDMD knockout mice with cisplatin-induced AKI, we found that cisplatin-induced loss of renal function, renal tubular injury, and inflammation was significantly attenuated compared with wild-type mice. Furthermore, the GSDMD-N fragment was overexpressed by an established rapid plasmid tail vein injection approach to evaluate the role of this cleaved form of GSDMD in AKI. As expected, mice with GSDMD-N fragment overexpression in the kidney were more susceptible to cisplatin-induced AKI than control mice, as evidenced by further elevated serum levels of blood urea nitrogen and creatinine, aggravated renal pathology, increased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and enhanced renal inflammatory cytokine secretion, which indicates a pathogenic role of GSDMD-N in cisplatin-induced AKI by triggering cell pyroptosis. Similar results were also observed in renal tubular epithelial cells overexpressing the GSDMD-N fragment. Thus these findings suggested that the activation of GSDMD contributes to cisplatin-induced AKI, possibly through triggering pyroptosis.


2018 ◽  
Vol 46 (3) ◽  
pp. 975-985 ◽  
Author(s):  
Rong Lei ◽  
Fei Zhao ◽  
Cheng-Yuan Tang ◽  
Min Luo ◽  
Shi-Kun Yang ◽  
...  

Background/Aims: Contrast induced-acute kidney injury (CI-AKI) is one of the most common causes of acute kidney injury (AKI) in hospitalized patients. Mitophagy, the selective elimination of mitochondria via autophagy, is an important mechanism of mitochondrial quality control in physiological and pathological conditions. In this study, we aimed to determine effects of iohexol and iodixanol on mitochondrial reactive oxygen species (ROS), mitophagy and the potential role of mitophagy in CI-AKI cell models. Methods: Cell viability was measured by cell counting kit-8. Cell apoptosis, mitochondrial ROS and mitochondrial membrane potential were detected by western blot, MitoSOX fluorescence and TMRE staining respectively. Mitophagy was detected by the colocalization of LC3-FITC with MitoTracker Red, western blot and electronic microscope. Results: The results showed that mitophagy was induced in human renal tubular cells (HK-2 cells) under different concentrations of iodinated contrast media. Mitochondrial ROS displayed increased expression after the treatment. Rapamycin (Rap) enhanced mitophagy and alleviated contrast media induced HK-2 cells injury. In contrast, autophagy inhibitor 3-methyladenine (3-MA) down-regulated mitophagy and aggravated cells injury. Conclusions: Together, our finding indicates that iohexol and iodixanol contribute to the generation of mitochondrial ROS and mitophagy. The enhancement of mitophagy can effectively protect the kidney from iodinated contrast (iohexol)-induced renal tubular epithelial cells injury.


Sign in / Sign up

Export Citation Format

Share Document