scholarly journals Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Joost Verduijn ◽  
Louis Van der Meeren ◽  
Dmitri V. Krysko ◽  
André G. Skirtach

AbstractRegulated cell death modalities such as apoptosis and necroptosis play an important role in regulating different cellular processes. Currently, regulated cell death is identified using the golden standard techniques such as fluorescence microscopy and flow cytometry. However, they require fluorescent labels, which are potentially phototoxic. Therefore, there is a need for the development of new label-free methods. In this work, we apply Digital Holographic Microscopy (DHM) coupled with a deep learning algorithm to distinguish between alive, apoptotic and necroptotic cells in murine cancer cells. This method is solely based on label-free quantitative phase images, where the phase delay of light by cells is quantified and is used to calculate their topography. We show that a combination of label-free DHM in a high-throughput set-up (~10,000 cells per condition) can discriminate between apoptosis, necroptosis and alive cells in the L929sAhFas cell line with a precision of over 85%. To the best of our knowledge, this is the first time deep learning in the form of convolutional neural networks is applied to distinguish—with a high accuracy—apoptosis and necroptosis and alive cancer cells from each other in a label-free manner. It is expected that the approach described here will have a profound impact on research in regulated cell death, biomedicine and the field of (cancer) cell biology in general.

2021 ◽  
Author(s):  
Roopam K Gupta ◽  
Nils Hempler ◽  
Graeme Malcolm ◽  
Kishan Dholakia ◽  
Simon J Powis

T cells of the adaptive immune system provide effective protection to the human body against numerous pathogenic challenges. Current labelling methods of detecting these cells, such as flow cytometry or magnetic bead labelling, are time consuming and expensive. To overcome these limitations, the label-free method of digital holographic microscopy (DHM) combined with deep learning has recently been introduced which is both time and cost effective. In this study, we demonstrate the application of digital holographic microscopy with deep learning to classify the key CD4+ and CD8+ T cell subsets. We show that combining DHM of varying fields of view, with deep learning, can potentially achieve a classification throughput rate of 78,000 cells per second with an accuracy of 76.2% for these morphologically similar cells. This throughput rate is 100 times faster than the previous studies and proves to be an effective replacement for labelling methods.


Sign in / Sign up

Export Citation Format

Share Document