scholarly journals Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jianwu Shi ◽  
Kin Lam Fok ◽  
Pengyuan Dai ◽  
Feng Qiao ◽  
Mengya Zhang ◽  
...  

AbstractSpermatozoa acquire their fertilizing ability and forward motility during epididymal transit, suggesting the importance of the epididymis. Although the cell atlas of the epididymis was reported recently, the heterogeneity of the cells and the gene expression profile in the epididymal tube are still largely unknown. Considering single-cell RNA sequencing results, we thoroughly studied the cell composition, spatio-temporal differences in differentially expressed genes (DEGs) in epididymal segments and mitochondria throughout the epididymis with sufficient cell numbers. In total, 40,623 cells were detected and further clustered into 8 identified cell populations. Focused analyses revealed the subpopulations of principal cells, basal cells, clear/narrow cells, and halo/T cells. Notably, two subtypes of principal cells, the Prc7 and Prc8 subpopulations were enriched as stereocilia-like cells according to GO analysis. Further analysis demonstrated the spatially specific pattern of the DEGs in each cell cluster. Unexpectedly, the abundance of mitochondria and mitochondrial transcription (MT) was found to be higher in the corpus and cauda epididymis than in the caput epididymis by scRNA-seq, immunostaining, and qPCR validation. In addition, the spatio-temporal profile of the DEGs from the P42 and P56 epididymis, including transiting spermatozoa, was depicted. Overall, our study presented the single-cell transcriptome atlas of the mouse epididymis and revealed the novel distribution pattern of mitochondria and key genes that may be linked to sperm functionalities in the first wave and subsequent wave of sperm, providing a roadmap to be emulated in efforts to achieve sperm maturation regulation in the epididymis.

2019 ◽  
Author(s):  
Tian Qin ◽  
Chun-mei Fan ◽  
Ting-zhang Wang ◽  
Long Yang ◽  
Wei-liang Shen ◽  
...  

ABSTRACTWhile the capacity to regenerate tissues or limbs is limited in mammals including humans, unlike us, axolotls are able to regrow entire limbs and major organs. The wound blastema have been extensively studied in limb regeneration. However, due to the inadequate characterization and coordination of cell subpopulations involved in the regeneration process, it hinders the discovery of the key clue for human limb regeneration. In this study, we applied unbiased large-scale single-cell RNA sequencing to classify cells throughout the adult axolotl limb regeneration process. We computationally identified 7 clusters in regenerating limbs, including the novel regeneration-specific mitochondria-related cluster supporting regeneration through energy providing and the COL2+ cluster contributing to regeneration through cell-cell interactions signals. We also discovered the dedifferentiation and re-differentiation of the COL1+/COL2+ cellular subpopulation and uncovered a COL2-mitochondria sub-cluster supporting the musculoskeletal system regeneration. On the basis of these findings, we reconstructed the dynamic single-cell transcriptome atlas of adult axolotl limb regenerative process, and identified the novel regenerative mitochondria-related musculoskeletal populations, which yielded deeper insights into the crucial interactions between cell clusters within the regenerative microenvironment.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Nasna Nassir ◽  
Asma Bankapur ◽  
Bisan Samara ◽  
Abdulrahman Ali ◽  
Awab Ahmed ◽  
...  

Abstract Background In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of ‘brain to behaviour’ pathogenic mechanisms, remains largely unknown. Methods We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). Results We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10–11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10–11, oligodendrocyte, p < 1.31 × 10–09). Conclusion Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.


Cell ◽  
2021 ◽  
Vol 184 (7) ◽  
pp. 1895-1913.e19 ◽  
Author(s):  
Xianwen Ren ◽  
Wen Wen ◽  
Xiaoying Fan ◽  
Wenhong Hou ◽  
Bin Su ◽  
...  

Cell ◽  
2021 ◽  
Vol 184 (23) ◽  
pp. 5838
Author(s):  
Xianwen Ren ◽  
Wen Wen ◽  
Xiaoying Fan ◽  
Wenhong Hou ◽  
Bin Su ◽  
...  

2021 ◽  
Author(s):  
Nasna Nassir ◽  
Asma Bankapur ◽  
Bisan Samara ◽  
Abdulrahman Ali ◽  
Awab Ahmed ◽  
...  

Abstract Background In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of ‘brain to behaviour’ pathogenic mechanisms, remains largely unknown. Methods We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single cell transcriptomes (> million cells) and de novo loss of function (LOF) ASD mutations (impacting 852 genes from 40122 cases). Results We identified multiple single cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high PLi genes. These clusters also showed significant enrichment with ASD loss of function mutation genes (p < 5.23 x 10− 11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF mutated genes into large scale human and mouse brain single cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 x 10− 11; oligodendrocyte, p < 1.31 x 10− 09). Conclusion Among the ASD genes enriched with pathogenic de novo LOF mutations (i.e., KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD, and the need to explore other biological pathways for this disorder.


Sign in / Sign up

Export Citation Format

Share Document