scholarly journals Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Kevin N. Wood ◽  
K. Xerxes Steirer ◽  
Simon E. Hafner ◽  
Chunmei Ban ◽  
Shriram Santhanagopalan ◽  
...  
Author(s):  
K. Ganesh Kumar ◽  
P. Balaji Bhargav ◽  
C. Balaji ◽  
Ahmed Nafis ◽  
K. Aravinth ◽  
...  

Abstract Owing to high lithium ion conductivity and good stability with lithium metal, Li7La3Zr2O12 (LLZO—a solid electrolyte) has emerged as a viable candidate for solid-state battery applications. In the current study, Al-substituted LLZO (Al-LLZO) powder is synthesized using a typical solid-state reaction. The pellets are made with the synthesized powder and are subjected to annealing for different durations and its effect on the structural properties of the Al-LLZO is investigated in detail. Reitveld refinement of the powder X-ray diffraction pattern reveals that the sintered Al-LLZO belong to the cubic system with the Ia-3d space group at room temperature. Morphology and microstructural properties of sintered powder are analyzed using field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED), respectively. The FESEM image of LLZO pellets shows well-structured cubic grains spread evenly over on the surface after sintering. The chemical compositions of the sample are identified using energy dispersive X-ray analysis (EDAX). The surface chemistry of the prepared samples is examined by X-ray photoelectron spectroscopy (XPS), which states that the observed photoelectron signals from O 1s at about 531 eV and Li1s at 54.52 eV correspond to the Li-O bond in Al-LLZO. Raman spectra have been analyzed and the observed Raman peaks appearing at 299 cm−1, 393 cm−1, 492 cm−1, and 514 cm−1 were assigned to Eg, F2g, A1g, and F2g, respectively. Phase transformation from C-LLZO to the pyrochore LZO phase is noticed when the sample is sintered for 12 h at 1100 °C. The impedance analysis is carried out to measure the conductivity of the Al-LLZO pellet and is found to be 0.3 × 10−5 S cm−1, which is suitable for solid electrolyte applications in lithium ion batteries.


2015 ◽  
Vol 7 (36) ◽  
pp. 20004-20011 ◽  
Author(s):  
Benjamin T. Young ◽  
David R. Heskett ◽  
Cao Cuong Nguyen ◽  
Mengyun Nie ◽  
Joseph C. Woicik ◽  
...  

2016 ◽  
Vol 18 (20) ◽  
pp. 13927-13940 ◽  
Author(s):  
T. M. Fears ◽  
M. Doucet ◽  
J. F. Browning ◽  
J. K. S. Baldwin ◽  
J. G. Winiarz ◽  
...  

This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule.


Sign in / Sign up

Export Citation Format

Share Document